

L6982 SEE TEST REPORT

L6982, 38 V, 2 A synchronous step-down converter with 20 µA quiescent current

Prepared by Philipp Mand

Document Type RP

Reference ESA-TECQEC-RP-2024-000357

Issue/Revision

Date of Issue 01/02/2024

Status N/A

APPROVAL

Title	L6982 SEE Test Report		
Issue Number	1	Revision Number	[Revision]
Author	Philipp Mand	Date	01/02/2024
Approved By	Viyas Gupta	Date of Approval	

CHANGE LOG

Reason for change	Issue Nr	Revision Number	Date

CHANGE RECORD

Issue Number 1	Revision Number				
Reason for change	Date Pages Paragraph(s)				

DISTRIBUTION

Name/Organisational Unit	

Table of Contents

1. Disclaimer	4
2. Introduction	5
3. Acronyms	5
4. HEavy Ion Irradiation Facility	6
5. Devices Under Test	6
6. Test Preparation	8
6.1. Sample preparation	8
6.2. Test set-up	9
6.3. Measurement	11
6.4. Acquisition of Data	12
7. Single Event Effects Results	12
7.1. Non-destructive Single Event Effects Results	13
7.2. Impact of the Load on Non-destructive Single Event Effects	14
7.3. DSEE Results	15
8. Conclusion	18
9. References	19
10. Annex	20

1. DISCLAIMER

The information contained herein is presented for informational purposes only. ESA does not make, and disclaims, any representation or warranty, express or implied, of the correctness and completeness of this information, and its fitness for a particular purpose. This information does not constitute or imply an ESA endorsement or approval for the use of any tested part in ESA activities or third-party activities. In particular, but without limitation, this is due to traceability which cannot be guaranteed on commercial components but is an important prerequisite for the reusability of TID, TNID and SEE radiation test results. The information herein can therefore not be reused without further justifications which may vary depending on the type of space activity concerned.

Reproduction of parts of the test summary is authorised on the condition that clear reference is made to the test report number and this disclaimer.

ESA reserves the right to alter, revise, or rescind this document due to subsequent developments or additional test results. ESA intends, but cannot guarantee, that the ESARAD database always contains latest versions of the test reports.

2. INTRODUCTION

The aim of this Single Event Effect test campaign was to evaluate the SEE radiation hardness level of the L6982 buck converter component from Linear Technologies, especially regarding destructive single event effects, Single Event Functional Interrupts (SEFI), and Single Event Transients (SET), as well as their dependence on bias voltage and load. Tests were performed at room temperature and at LET of 46 MeV · cm²/mg and 62 MeV · cm²/mg.

The component is selected from an ESA internal list of Commercial Of-The-Shelf (COTS) components, which contains components of high importance for ESA projects. The reported data can be used to derive information of a Safe-Operating-Area (SOA) of this device.

The test was carried out on 20-21 March and on the 8-9 June 2023 at UCLouvain in Belgium.

3. ACRONYMS

HIF	Heavy Ion Facility
COTS	Commercial-Off-The-Shelf
DSEE	Destructive Single Event Effect
DUT	Devices Under Test
HIF	Heavy Ion Facility
LDMOS	Lateral-Diffused Metal-Oxide Semiconductor
LET	Linear Energy Transfer
MIP	Microwaved Induced Plasma
MOSFET	Metal-Oxide-Semiconductor-Field-Effect Transistor
NDSEE	Non-Destructive Single Event Effect
PC	Power Cycle
SEB	Single Event Burnout
SEE	Single Event Effect
SEFI	Single Event Functional Interrupt
SEGR	Single Event Gate Rupture

SEL	Single Event Latchup	
SET	Single Event Transient	
SOA	Safe Operating Area	

4. HEAVY ION IRRADIATION FACILITY

The heavy ion facility used for this test campaign is the Heavy Ion Facility (HIF) of UC-Louvain in Belgium [1]. The facility offers a cocktail of 9 ions including Xe-ions and Rh-ions which are used during this campaign. In the following table the available particles inside the cocktail are displayed. In this study Xe and Rh-ions where used.

Table 1: Available Ions at UCL (from [1])

M/Q	lon	Energy [MeV]	Range [µm]	LET [MeV/(mg/cm²)]
3,25	¹³ C ⁴⁺	131	269.3	1,3
3,14	²² Ne ⁷⁺	238	202,0	3,3
3,37	²⁷ AI ⁸⁺	250	131,2	5,7
3,27	³⁶ Ar ¹¹⁺	353	114,0	9,9
3,31	⁵³ Cr ¹⁶⁺	505	105,5	16,1
3,22	⁵⁸ Ni ¹⁸⁺	582	100,5	20,4
3,35	⁸⁴ Kr ²⁵⁺	769	94,2	32,4
3,32	¹⁰³ Rh ³¹⁺	957	87,3	46,1
3,54	¹²⁴ Xe ³⁵⁺	995	73,1	62,5

5. DEVICES UNDER TEST

In Table 2 the parameters of the Device under Test (DUT), the L6982, is given:

Table 2: List and Description of the DUTs

Manufacturer	PM	Year, die	Product	Uin,max (V)	Uout,max (V)	Uout,min (V)	ld,cont,max (A)	frequency (MHz)
ST	9224	2017	<u>L6982</u>	38	38	0.85	2	0.2-2.2

This device is a synchronous buck converter with a half bridge configuration which is used to step down a voltage with a switching application. For the device a specific application close to the usual application as presented in the datasheet, was developed. In Figure 1, a usual application for this synchronous buck converter with the internal MOSFETs (LDMOS) is given.

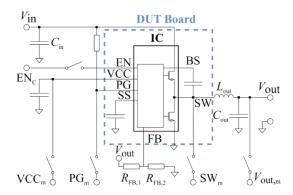


Figure 1: Typical application synchronous buck converter

In Figure 2, the capsulated component is given. Figure 3 the Block diagram of the device is shown and in Figure 4 the decapsulated die can be seen.

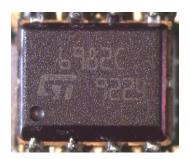


Figure 2: Package of the L6982 component

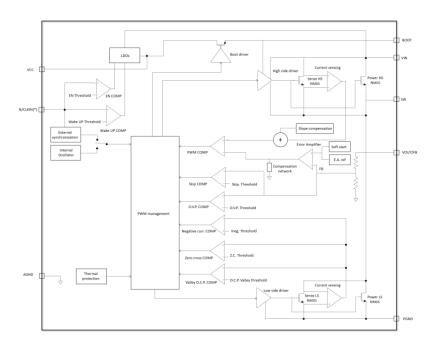


Figure 3: Block diagram of the L6982

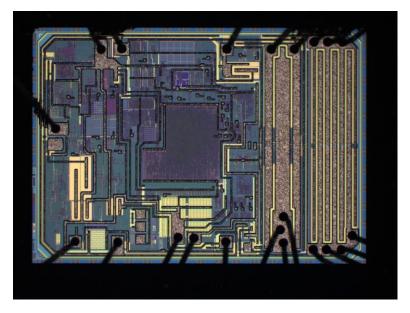


Figure 4: die of the L6982

6. TEST PREPARATION

6.1. Sample preparation

Due to the limited penetration depth of Xe-ions (75 μ m in silicon), it is necessary to decapsulate the component to directly irradiate the die of the device. For the decapsulation procedure ESA internal equipment was used, including a laser to thin down the plastic capsulation and the use

of a Microwave Induced Plasma (MIP) etcher, that etches down organic material and do not modify any inorganic material like silicon or metals. With these two tools a safe decapsulation was possible and in total 12 L6982 devices have been decapsulated for the heavy ion test. After each procedure a full functionality test was performed to validate the nominal operation.

6.2. Test set-up

The test was performed with heavy ion irradiation at UCLouvain. The irradiation was performed in vacuum. The test was done in different application conditions. For the test, the following equipment, Table 3, was used:

Equipment	Name	Description
2x Source meter	Keithley 2612A	Providing the bias voltage/current and the Relay supply current
1 x Voltage source	Keysight N6705C	Used to test voltages above 35 V (if no DSEE happened at lower voltage)
1x 4 channel oscilloscope	Keysight DSOS804A	To observe all the parameters mentioned
1x Laptop		To acquire data and to set the test setup

Table 3: Test Equipment

In Figure 5 the basic test setup with the equipment and the test boards inside the vacuum chamber is visualized. Besides the L6982, multiple different buck converters have been tested during the campaign.

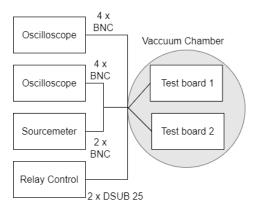


Figure 5: Test setup

For fast DUT sample exchange, a DUT board was designed and used for every different device type. This DUT board is mounted via pin headers on a second board, named "radiation-test-

board" with the application circuitry and measurement and control connections to the outside. In the following a basic overview of the setup is given.

In Figure 6 the DUT board can be seen. This board is then mounted on the radiation-test-board in Figure 7. Specific values for the capacitances and inductances were calculated for each board to ensure a worst-case electrical stress while maintaining stability of the device. The biasing can flexibly be adjusted by jumpers and relays. The relays can be used to switch between the DUTs. In addition, the parameters of the device can be measured individually, and the device can be enabled and disabled. The relays are controlled outside the chamber with a specific designed relay-control-board.

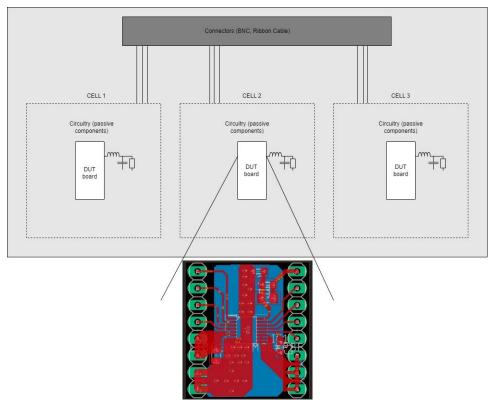


Figure 6: Visualization of the radiation-test-boards

Figure 7: Test setup with the L6982 board on the bottom side

In Figure 8 an overview with the important capacitances is given. The value of the output capacitance is calculated to Cout = $80~\mu F$, the input capacitance is Cin = $30~\mu F$ the output Inductance is Lout = $22~\mu H$. The input & output conditions are summarised together with the results in Table 8.

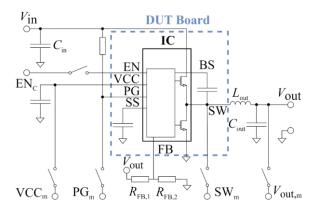


Figure 8: Simplified test setup with Cout = $80 \mu F$, Cin = $30 \mu F$, Lout = $22 \mu H$ with varying input and output conditions described in Table 8.

6.3. Measurement

As stated above, the use of relays allows an individual measurement for each DUT on the radiation-test-boards. All-important measurable device parameters are provided in Table 4.

Table 4: Measurement Parameters

PIN/Parameter	Description	I/O	Measured	Type of Measurement
sw	Switching node	0	yes	SW Voltage & (Frequency)
воот	Bootstrap pin	I	no	-
vcc	LDO output	I/O	no	-
FB	Feedback input	I	no	-
EN	Enable input pin	I	no	-
AGND	Analog GND		no	-
Vin	Input voltage	I	yes	Input Voltage & Current
PGND	Power GND		no	-
Vout	Filtered output voltage		yes	Voltage

6.4. Acquisition of Data

The most important parameter of the DUT is the output voltage. Therefore, a trigger of the oscilloscope is set to the output voltage to observe whether the parameters are within the operating range. Also triggers on the PG have been set. As soon as the output voltage or PG voltage leaves the operating range, the oscilloscope acquires the data of SW pin, Vcc pin, Pgood pin and the output voltage. During the acquisition, the flux of the beam was adapted to not oversaturate the scope. That meaning, the saving time of the acquisition lead to the adjustment of the flux in such a way, that a safe acquisition of every SET was possible without the danger of losing the acquisition of other SETs. In addition, current measurements have been carried out to observe overcurrent situations, and, in the event of an overcurrent event, an internal designed delatching system was used to power off the device quickly to prevent a destruction in the event of a Single Event Latch up.

7. SINGLE EVENT EFFECTS RESULTS

7.1. Non-destructive Single Event Effects Results

In Table 5 an overview of the kind and number of the non-destructive SEEs is given. All changes in the output voltage are due to functional interrupts of the switching of the L6982. NDSEE were solely captured during irradiation under Rhodium and not under Xenon.

There are different kinds of SEFIs measured and presented in Table 5. Each SEFI type was grouped based on the different behaviours of the device. No Power Cycle SEFI was measured during the irradiation. In Table 6 the number and kind of observed SETs is visualized. The number of events achieved was a trade-off between having enough statistical data & overall beamtime schedule. The observed SEFIs are dependent on the chosen SS time. As can be seen in Figure 9, this takes the longest for the device to be operable again. A cross section and an upper bound cross section, calculated with the Upper-Nevents is presented in Table 5 and 6 and is calculated as follows:

$$UpperN_{events} = 0.5 * CHISQ.INV.RT((1 - CL)/2,2x(N_{events} + 1)$$
, With:

- *UpperN*_{events}, the upper limit of the confidence interval *N*_{events} of observed.
- *CHISQ.INV.RT*, returns the inverse of the right-tailed probability of the chi-squared distribution.
- *CL*, Confidence Limits, here the 95% confidence limit shall be used.
- N_{events}, the number of observed events.

Table 5: Description of the measured non-destructive SEFIs under Rh-ion irradiation and an Input voltage of 12 V and output current of 0.06 A

SEFIS with effect on Vout	Referenc e Figure	Cross section #/ions/cm ²	Upper- bound cross- section #/ions/cm ²	Fluence in ions/cm ²	Duration of SEFI in s	Number (#) of Events	Description
Shutdown SEFI	Fig. 8.	7.7 ·10 ⁻⁶	9.6 · 10 ⁻⁶	1 · 10 ⁷	Up to 3·10 ⁻²	77	After overvoltage situation decrease to 0.4 V of nominal 3.3 Vout
Reset SEFI	-	6 · 10-7	1.3 · 10-6	1.107	Until reset	6	Shut down of the device, reset over enable pin necessary
Power Cycle SEFI	-	5 · 10-7	1.17 · 10-6	1.107	Until PC	5	Shut down of the device, full power cycle necessary

Table 6: Description of the measured non-destructive SETs under Rh-ion irradiation and an Input voltage of 12 V and output current of 0.06 A

SEFIS with effect on Vout	Reference Figure	Cross section cm ²	Upper- bound cross- section cm ²	Fluence in ions/cm ²	Duration of SEFI in s	Number (#) of Events	Description
Small undervoltag e SET	Fig. 8.	2.1 · 10-6	7.23 · 10 ⁻⁶	$1 \cdot 10^7$	Up to 1·10 ⁻⁴	21	decrease to 2.9 V of nominal 3.3 Vout
Overvoltag e SET	Fig. 9.	7.7 · 10-6	1.5 · 10-5	$1 \cdot 10^{7}$	Up to 1·10 ⁻⁴	77	Increase of up to 4.3 V of nominal 3.3 Vout

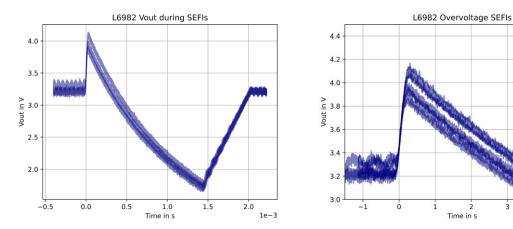


Figure 9: Overvoltage transient that led to an undervoltage condition on the load with an overlay of multiple the overvoltage SETs and SEFIs (left) and multiple overvoltage SETs (right) during Rh-ion irradiation at Vin = 12 V, Rload = 50 Ohm and incident angle of 0°

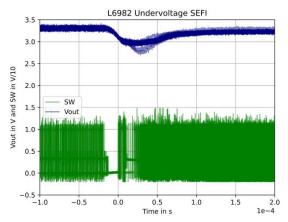


Figure 10: SET that lead to an undervoltage condition on the load with multiple SETs during Rh-ion irradiation at Vin = 12 V, Rload = 50 Ohm and incident angle of 0°

7.2. Impact of the Load on Non-destructive Single Event Effects

The previously presented results for non-destructive SEEs can be considered as the worst-case condition. In fact, not only the Safe operation of the device regarding DSEE is dependent on their bias condition but also the non-destructive SEEs. It has been observed, that at the

maximum output current tested (0.6 A) 85 events for a Fluence of 1 x10⁷ ions/cm² have been observed, while at 0.06 A output current the number of events has been higher. Table 7 displays the results. This test was carried out under Rh-ion irradiation. This test was not performed under Xe-ion irradiation.

Load condition	Cross section cm ²	Upper- bound cross- section cm ²	Fluence in ions/cm ²	Maximum duration of SEFI in s	Number (#) of Events	Description
Vin= 12 V, Iout = 0.06 A	1.09 · 10-5	1.31 · 10-5	1 · 10 ⁷	Up to 1·10 ⁻⁴	109	Effects as shown above, here combined: undervoltage that led to SEFI & undervoltage SET
Vin = 12 V Iout = 0.6 A	8.5·10 ⁻⁶	1.05 · 10 ⁻⁵	$1\cdot10^7$	Up to 7·10 ⁻⁴	85	Effects as shown above, here combined: undervoltage that led to SEFL& undervoltage SET

Table 7: Total number of Events at different Load conditions under Rh-ion irradiation

7.3. DSEE Results

The device was tested against DSEE during Rh-ion irradiation at a normal incidence angle of 0°. In Table 8 and Table 9 a SOA is given.

The success criteria for validating a given test conditions (electrical, angle & LET) was to have 3 different DUT tested & fully functional after the same test conditions at a fluence of $F = 1 \cdot 10^7$ cm⁻². In Figure 11, a device is given with Roll and Pitch direction and in Table 8 and Table 9 the angle in the shown direction is given. At an input voltage of 12 V and a low load the device survived the Rh-ion and Xenon-ion irradiation at an incident angle of 0°. No SEL occurred during any of the test runs & test conditions.

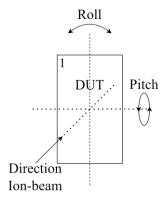


Figure 11: Display of the Roll and Pitch during tilting of the DUT. The DUT is irradiated with the first pin on the upper right and then tilted to the direction of the lon-beam in the given directions.

Table 8: DSEEs and Safe Operating Area during Rh-ion irradiation

Vin (LET 46	Incider	nt Angle @ 0°	Incident Angle @ pitch 0° & tilt 45°	Incident Angle @ pitch 90° & tilt 45°				
MeV·cm ² / mg)	Low load (0.06 A)	High load (0.6 A)	High Load (0.6 A)	High Load (0.6 A)				
10V	S2	S5						
12V	S1, S3, S5	S2, S3, S5	S4	S6				
15V								
19V	\$1, \$2	\$3	\$ 4	\$6				
24V	-	-						
29V	-	-						
42V	-	-						

Table 9: DSEEs and Safe Operating Area during Xe-ion irradiation

Vin (LET 60 MeV · cm ² /	Incider	nt Angle @ 0°	Incident Angle @ pitch 0° & tilt 45°	Incident Angle @ pitch 90° & tilt 45°				
mg)	Low load (0.06 A)	High Load (0.6 A)	High Load (0.6 A)	Very High Load (0.6 A)				
10V								
12V		S7, S8	S9	S10				
15V								
19V		\$7	S9	\$10				
24V		-	-	-				
29V								
42V								

In Figure 12 a visualization of the SOA is given. The red area is the unsafe area where a destructive event has been observed. The yellow area is an area usable for high-risk missions when a LET of 46 MeV · cm²/mg or below is acceptable. The green area is characterized in terms of DSEE at nominal incidence at LET of 63 MeV · cm²/mg. The Figure is displayed at normal incident. Tilting is not included as the success criteria of three devices per condition is not met. However, in the Tables above the information regarding the tilting can be observed.

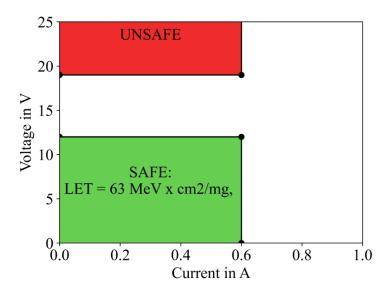


Figure 12. Safe Operating Area for the L6982 with the unsafe are (red), and safe area with tilting (green)

In Figure 13. A destructive event is visualized. An earlier voltage increase of the SW pin was observed. The switching application was interrupted and the SW voltage staid high. This can be explained by a short on the power bus that was created by turning on both, high- and low-side MOSFET at the same time that led to the destruction of the high side. The low side shut down is observable. This destructive effect can also be observed in Figure 14 here the high side showed a clear burnout.

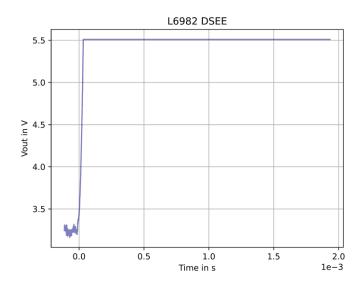


Figure 13: DSEE at Vin = 28 V during Rh-ion irradiation at incident angle of 0°

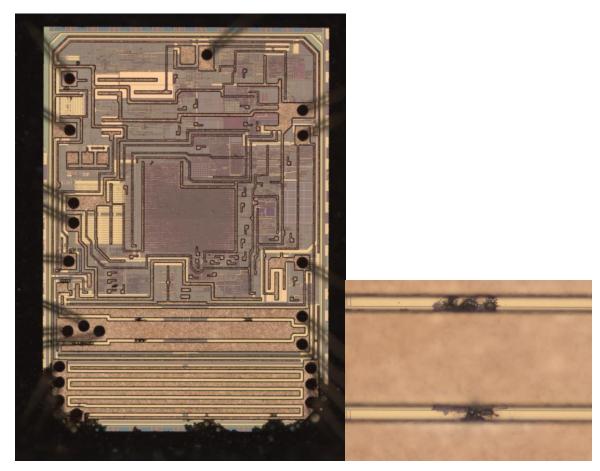


Figure 14 Closeup (right) and full die (left) of a L6982 after a DSEE

8. CONCLUSION

The aim of this test campaign is to evaluate the radiation hardness of the COTS L6982 buck converter component (date code 9224) tested at 2 LET and room temperature against NDSEE and DSEE.

The L6982 showed DSEE outside of the safe operating area. The SOA can be defined as follows:

• 12 V up to 0.6 A for an LET of 62 MeV · cm²/mg including partial results at tilting angles.

The component showed not only DSEE but also a variety of non-destructive effects all of which need consideration in assessing the use of this part. The devices exhibit overvoltage situations that could potentially damage the load. No Single Event Latchups have been observed during the testing. In Table 10 a SEE summary is given.

The data provided in the report should be handled with caution considering traceability challenges in the use of COTS. However, the data gives an overview of different kinds of SEE and allows preparation for validation test campaigns and be able to identify possible mitigation techniques.

Table 10: SEE Summary

Item	Description
Aim	SEE sensitivity evaluation of different synchronous buck converter devices for destructive SEE and SET/SEFI
Biasing Conditions	 various input voltages and output currents steady output voltage 3.3 V and steady switching frequency (850 kHz)
Sample size	3 devices to be tested for each final biasing condition for result confirmation
LET	46 MeV · cm²/mg and 60 MeV · cm²/mg
	1. $10^7 \text{ ions/cm}^{-2} \text{ for DSEE}$
Fluence	 various for SET and SEFI characterization
Environmental condition	Room temperature condition
	Safe Operating Area for DSEE:
	1. high load and 12 Vin @ 62 MeV $\cdot \frac{\mathrm{cm}^2}{\mathrm{mg}}$,
	2. Low load and 12 Vin @ 62 MeV $\cdot \frac{\text{cm}^2}{\text{mg}}$,
Results	Soft-error & non-destructive SEL sensitivity (Rh irradiation):
	 Shutdown-SEFI, Reset-SEFI and power cycle SEFI
	2. Undervoltage SET, Overvoltage SET
	3. No SEL observed

9. REFERENCES

[1] UCLouvain, Heavy Ion Facility, Heavy Ion Facility (HIF) | UCLouvain

- [2] ST microelectronics, L6982, 38 V, 2 A synchronous step-down converter with 20 μA quiescent current, L6982 38 V, 2 A synchronous step-down converter with low quiescent current STMicroelectronics
- [3] ESCC, Single Event Effect Test Method and Guidelines, ESCC Basic specification No. 25100

10. ANNEX

In the following tables the whole test campaign including different COTS devices is given.

Run	Facility log #	Reminder Philipp file name	DUT	Vinput	Rout (Ohm)	Pitch (*)	num (Y/)	Beam collima tion (Shape , size & positio n)	ايو	Energy (MeV) LET Normal in Si (90°)	LET Effective (in Si)	Range (um)	Flux target (/cm²/s)	Ruence target(/cm²)	Duration Target (sec)	am Homogenity (%)	Type of test / Mode/SW tested	Scope Trigger	(mA)	nominal current (mA)	Starttime	Duration actual (sec)	Ruence actual (/cm²)	Cumulative Fluence (/cm²)	Flux actual (/cm²/s)	Run dose (krad)	Total dose (krad)	Test	Measured SEL level	# NDSEL (approximativ ely - to be postreated)	# DSEE (SEGR/SEB /DSEL) (approxima tively)	# SET (approxima tively)	# auto-SEFI (approxima tively)	# soft-SEFI (approximati vely)	# PC-SEFI (approxima tively)	# Other SEE (approxim atively)
46	8	ОК	L6982 - S1* (new)	12	0.6A	0 0	Yes	C2*2	Xe 9	195 63	3 63	73	1.50E+04	1.00E+07	666.7	10		Vout pos. @ 3.32V, then Vout neg. @ 2.71 V	100	200.00	14:16	736	1.00E+07	1.00E+07	13586.957	1.00E+01	1.00E+01	ОК						2		
47	9	ok	L6982-S1*	19	0.6A	0 0	Yes	C2*2	Xe 9	195 63	63	73	1.50E+04	1.00E+07	666.7	10		Vout pos. @ 3.32V	100	120.00	14:31	17	1.00E+05	1.00E+05	5882.3529	1.00€-01	1.00E-01	ок			1DSEE					
48	10	ok	L6982-S2	12	0.6A	0 0	Yes	C2*2	Xe 9	195 63	3 63	73	1.50E+04	1.00E+07	666.7	10	confirmation run	Vout pos. @ 3.32V Vout neg @ 2.9V	100	190.00	14:35	713	1.00E+07	1.00E+07	14025.245	1.00E+01	1.00E+01	ок								
53	15	ОК	L6982 - S2*	10, then 12, then 19	0.6A	0 4	5 Yes	C2*2	Xe 9	195 63	3 88	73	1.50E+04	1.00E+07	666.7	10	Testing with tilt 45°	Vout pos. @ 3.5V	100	240.00	16:01	564	4.34E+06	4.34E+06	7695.0355	4.34E+00	4.34E+00	ок							several not counted	
54	16	ok	L6982-S4*	10	0.6A	90 4	S Yes	C2*2	Xe 9	195 63	88	73	1,5E4	1.00E+07	******	10	Testing with tilt 45 and pitch 90	Vout pos. @ 3.5V	100	230.00	16:36	760	5.10E+06	5.10E+06	6710.5263	5.10E+00	5.10E+00	ок								
70	32	-	L6982-S7*	12V, then 19V	0.6A	0 4	S Yes	C2*2	Rh 9	157 41	65	87	1.50E+04	1.00E+07	666.7	10	Testing with tilt 45 and pitch 0°	Vout neg. @ 2.5V	100	194.00	22:04	255	2.12E+06	2.12E+06	8313.7255	1.56E+00	1.56E+00	ОК			1 DSEE					
71	33	-	L6982-S6*		0.6A	0 6	0 Yes	C2*2	Rh 9	157 41	92	87	1.50E+04	1.00E+07	666.7	10	Testing with tilt 60 and pitch 0°	Vout neg. @ 0.4V	100	190.00	22:11	291	2.07E+06	2.07E+06	7113.4021	1.53E+00	1.53E+00	ОК			1DSEE					
73	35	-	L6982-S10*	12V, then 19V.	0.6A	90 4	5 Yes	C2*2	Rh 9	157 41	65	87	1.50E+04	1.00E+07	666.7	10	Testing with tilt 45 and pitch 90°	Vout neg. @ 0.4V	100	190.00	22:48	218	2.07E+06	2.07E+06	9495.4128	1.53E+00	1.53E+00	ОК			1DSEE					

Run	Facility log #	DUT	3	and a	Tale (1	Vacuum (Y/N)?	Beam collima tion (Shape , size & positio n)	Particle	Energy (MeV)	For P see "SRIM"]	(in Si) Range (um)	Flux target (/cm²/s)	Fluence target (/cm²)	Duration Target (sec)	am Homogenity (%)	Type of test / Mode/SW tested	Scope Trigger	SEL current threshold (mA)	nominal current (m.A)	Start time	Duration actual (sec)	Fluence actual (/cm²)	Cumulative Fluence (/cm²)	Flux actual (/cm²/s)	Run dose (krad)	Total dose (krad)	Test OK/ NOK	Measured SEL level	# NDSEL (approximativ ely - to be postreated)	# DSEE (SEGR/SEB /DSEL) (approxima tively)	# SET (approxima tively)	# auto-SEFI (approxima tively)	# soft-SEFI (approximatively)	# PC-SER (approxima tively)	# Other SEE (approxim atively)
18	1	L6982 -	S1 1	9 0.1	06 0	Yes	C2*2	Rh	957	46 4	46 87.	3 1.00E+	03 1.00E+	07 1000	0 10	Exploration run & SE	Vout@ 3.1V (low SET)	200	· but may	12:21	639	2.13E+05	2.13E+05	333.333333	1.57E-01	1.57E-01	ок		0	1	0	0	15	0 (although all the 15 SEFI needed a PC, reset was done so fast that most lithely did not have time to discharge as we can see on the LDO line hence all 15 counted as soft SEFI)	0
19	2	L6982 -	52 1	0 0.1	0	Yes	C2*2	Rh	957	46 4	46 87.:	3 D then c	nan 1.00E+	D7 ####	# 10	SEL/SEB/SEGR	Vout⊜ 3.1V (low SET)	100	61.00	12:37	1694	1.00E+07	1:00E+07	5903.18772	7.38E+00	7.38E+00	ок		0	0	ОТВС	probably several (need to check the saved data)	11 (duty cycle) up to F=1.5E6 4 (chip down) (see note @ F=3.8E5 & later)	0 (one occurred but the soft reset was done too fast counted as soft SEFI)	0
20	3	L6982 -	S2 1	2 0.0	06 0	Yes	C2*2	Rh	957	46 4	46 87.:	3 1.50E+	04 1.00E+	07 666.	7 10	SEL/SEB/SEGR	Vout@ 3.46V (high SET)	100	53.00	13:08	770	1.00E+07	2.00E+07	12987.013	7.38E+00	1.48E+01	ОК	1				several (Vout goes down to 0 then recovers automatica lly).	6 (chip down) several (duty cycle)	1 (actual one here)	
21	4	L6982 -	S2 1	9 0.1	06 0	Yes	C2*2	Rh	957	46 4	46 87.	1.50E+	04 1.00E+	07 666.	7 10	SEL/SEB/SEGR	Vout@ 3.46V (high SET)	100	31.00	13:26	?	1.70E+05	2.02E+07	#VALUE!	1.25E-01	1.49E+01	ок		0	1	-	-	-	-	-
22	5	L6982 -	S3 1	2 0.1	06 0	Yes	C2*2	Rh	957	46 4	46 87.	3 1.50E+	04 1.00E+	07 666.	7 10	SEL/SEB/SEGR	Vout@ 3.1V (low SET)	100	53.00	13:31	704	1.00E+07	1.00E+07	14204.5455	7.38E+00	7.38E+00	ок		0	0	0	weral (on Vo	11 (chip down) several (duty cycle)	0	0
28	11	L6982 -	SS 1	2 0.	6 0	Yes	C2*2	Rh	957	46 4	46 87.:	3 1.50E+	04 1.00E+	07 666.	7 10	SEL/SEGR/SEB	Vout@ 3.1V (low SET)	200	60.00	15:41	695	1.00E+07	1.00E+07	14388.4892	7.38E+00	7.38E+00	ок		0	0	77	77	77	0	0
29	12	L6982 -	S4 1	2 0.	6 0	Yes	C2*2	Rh	957	46 4	46 87	3 1.50E+	04 1.00E+	07 666.:	7 10	SEL/SEGR/SEB	Vout@ 3.1V (low SET)	400	197.00	15:56	932	1.00E+07	1.00E+07	10729.6137	7.38E+00	7.38E+00	ок		0	0	77	Yes but high flux	Yes	3	0
30	13	L6982 -	S3 1	2 0.	6 0	Yes	C2*2	Rh	957	46 4	46 87.	1.50E+	04 1.00E+	07 666.	7 10	SEL/SEGR/SEB	Vout@ 3.1V (low SET)	400	197.00	16:14	676	1.00E+07	1.00E+07	14792.8994	7.38E+00	7.38E+00	ок		0	0	??	Yes but high flux	Yes	0	0
31	14	L6982 -	S3 1	9 0.	6 0	Yes	C2*2	Rh	957	46 4	46 87.	1.50E+	04 1.00E+	07 666.	7 10	SEL/SEGR/SEB	Vout@ 3.1V (low SET)	400	131.00	16:27	77	5.35E+05	1.05E+07	#VALUE!	3.95E-01	7.77E+00	ок	-	0	1	-	-	-	-	
37	20	L6982 -	SS 1	2 0.	6 0	Yes	C2*2	Rh	957		46 87.	1.50E+	04 1.00E+	07 666.	7 10	SEL/SEGR/SEB	Vout@ 3.1V (low SET)	400	200.00	17:38	726	1.00E+07	1.00E+07	13774.1047	7.38E+00	7.38E+00	ОК		0	0	several	?	?	5	0
38	21	L6982 -	S5 1	2 0.	6 45	Yes	C2*2	Rh	957	46 6	55 87.	1.50E+	04 1.00E+	07 666.	7 10	SEL/SEGR/SEB	Vout@ 3.1V (low SET)	400	200.00	?	?	2.60E+06	1.26E+07	#VALUE!	1.92E+00	9.29E+00	ок		?	?	?	7	?	?	0

