

LT7101 SEE TEST REPORT

105V, 1A Low EMI Synchronous Step-Down Regulator with Fast Current Programming PassThru

Prepared by	Philipp Mand
Document Type	RP - Report (Technical, Budget, Cost, Manpower, Travel, Audit, etc.)
Reference	ESA-TECQEC-RP-2024-000359
Issue/Revision	1
Date of Issue	01/02/2023
Status	N/A

APPROVAL

Title	LT7101 SEE Test Report		
Issue Number		Revision Number	
Author	Philipp Mand	Date	01/02/2023
Approved By	Viyas Gupta	Date of Approval	

CHANGE LOG

Reason for change	Issue Nr	Revision Number	Date

CHANGE RECORD

Issue Number	Revision Number		
Reason for change	Date	Paragraph(s)	

DISTRIBUTION

Name/Organisational Unit

Table of Contents

1. Disclaimer	4
2. Introduction	5
3. Acronyms	5
4. HEavy Ion Irradiation Facility	6
5. Devices Under Test	6
6. Test Preparation	8
6.1. Sample preparation	8
6.2. Test set-up	8
6.3. Measurement	11
6.4. Acquisition of Data	12
7. Single Event Effects Results	13
7.1. Non-destructive Single Event Effects Results	13
7.2. DSEE Results	15
7.2.1. Latchups*	15
7.2.2. Destructive Events	15
8. Conclusion	17
9. References	18
10. Annex	

1. DISCLAIMER

The information contained herein is presented for informational purposes only. ESA does not make, and disclaims, any representation or warranty, express or implied, of the correctness and completeness of this information, and its fitness for a particular purpose. This information does not constitute or imply an ESA endorsement or approval for the use of any tested part in ESA activities or third-party activities. In particular, but without limitation, this is due to traceability which cannot be guaranteed on commercial components but is an important pre-requisite for the reusability of TID, TNID and SEE radiation test results. The information herein can therefore not be reused without further justifications which may vary depending on the type of space activity concerned.

Reproduction of parts of the test summary is authorised on the condition that clear reference is made to the test report number and this disclaimer.

ESA reserves the right to alter, revise, or rescind this document due to subsequent developments or additional test results. ESA intends, but cannot guarantee, that the ESARAD database always contains latest versions of the test reports.

2. INTRODUCTION

The aim of this Single Event Effect test campaign was to evaluate the SEE radiation hardness level of the LT7101 buck converter component from Linear Technologies, especially regarding destructive single event effects, Signle Event Functional Interrupts (SEFI), and Single Event Transients (SET), as well as their dependence on bias voltage and load. Tests were performed at room temperature and at LET of 46 MeV \cdot cm²/mg and 62 MeV \cdot cm²/mg. The component is selected from an ESA internal list of Commercial Of-The-Shelf (COTS)

components, which contains components of high importance for ESA projects. The reported data can be used to derive information of a Safe-Operating-Area (SOA) for this device.

The test was carried out on 20-21 March and on the 8-9 June 2023 at UCLouvain in Belgium.

HIF	Heavy Ion Facility
COTS	Commercial-Off-The-Shelf
DSEE	Destructive Single Event Effect
DUT	Devices Under Test
HIF	Heavy Ion Facility
LDMOS	Lateral-Diffused Metal-Oxide Semiconductor
LET	Linear Energy Transfer
MIP	Microwaved Induced Plasma
MOSFET	Metal-Oxide-Semiconductor-Field-Effect
	Transistor
NDSEE	Non-Destructive Single Event Effect
PC	Power Cycle
SEB	Single Event Burnout
SEE	Single Event Effect
SEFI	Single Event Functional Interrupt
SEGR	Single Event Gate Rupture
SEL	Single Event Latchup

3. ACRONYMS

SET	Single Event Transient
SOA	Safe Operating Area

4. HEAVY ION IRRADIATION FACILITY

The heavy ion facility used for this test campaign is the HIF of UC-Louvain in Belgium. The facility offers a cocktail of 9 ions including Xe-ions and Rh-ions which are used during this campaign. In the following table the available particles inside the cocktail are displayed.

M/Q	lon	Energy [MeV]	Range [µm]	LET [MeV/(mg/cm²)]
3,25	¹³ C ⁴⁺	131	269.3	1,3
3,14	²² Ne ⁷⁺	238	202,0	3,3
3,37	²⁷ Al ⁸⁺	250	131,2	5,7
3,27	³⁶ Ar ¹¹⁺	353	114,0	9,9
3,31	⁵³ Cr ¹⁶⁺	505	105,5	16,1
3,22	⁵⁸ Ni ¹⁸⁺	582	100,5	20,4
3,35	⁸⁴ Kr ²⁵⁺	769	94,2	32,4
3,32	¹⁰³ Rh ³¹⁺	957	87,3	46,1
3,54	¹²⁴ Xe ³⁵⁺	995	73,1	62,5

Table 1: Available lons at UCL (from [1])

5. DEVICES UNDER TEST

In Table 2 the parameters of the Device under Test (DUT) are given.

Table 2: Description of the DUT

Manufacturer	Product	Uin,max (V)	Uout,max (V)	Uout,min (V)	ld,cont,max (A)	frequency (MHz)
Analog Devices	LT7101	105	105	1	1	0.2-2

This device is a synchronous buck converter with a half bridge configuration which is used to step down a voltage with a switching application. For the device a specific application close to

the usual application as presented in the datasheet, was developed. In Figure 1, a usual application for this synchronous buck converter with the internal MOSFETs (LDMOS) is given.

Figure 1: Typical application synchronous buck converter

In Figure 2 the Block diagram of the device is shown and in Figure 3 the decapsulated die can be seen.

Figure 2: Block Diagram of the LT7101

Figure 3: Microscope Picture of the package marking of the LT7101

6. TEST PREPARATION

6.1. Sample preparation

Due to the limited penetration depth of Xe-ions (75 µm in silicon), it is necessary to decapsulate the component to directly irradiate the die of the device. For the decapsulation procedure ESA internal equipment was used, including a laser to thin down the plastic capsulation and the use of a Microwave Induced Plasma (MIP) etcher, that etches down organic material and do not modify any inorganic material like silicon or metals. With these two tools a safe decapsulation was possible and in total 6 LT7101 devices have been decapsulated for the heavy ion test. After each procedure a full functionality test was performed to validate the nominal operation.

6.2. Test set-up

The test was performed with heavy ion irradiation at UCLouvain. The irradiation was performed in vacuum. The test was done in different application conditions. For the test, the following equipment, Table 3was used:

Table 3: Test Equipment

Equipment	Name	Description
2x Source meter	Keithley 2612A	Providing the bias voltage/current and the Relay supply current
1 x Voltage source	Keysight N6705C	Used to test voltages above 35 V (if no DSEE happened at lower voltage)
1x 4 channel oscilloscope	Keysight DSOS804A	To observe all the parameters mentioned in Table 4
1x Laptop		To acquire data and to set the test setup

In Figure 4 the basic test setup with the equipment and the test boards inside the vacuum chamber is visualized. Multiple different buck converters have been tested during the campaign. One of the test boards consist of the LT7101.

Figure 4: Test setup

For fast DUT sample exchange, a DUT board was designed and used for every different device type. This DUT board is mounted via pin headers on a second board, named "radiation-test-board" with the application circuitry and measurement and control connections to the outside. In the following a basic overview of the setup is given.

In Figure 5 the DUT board can be seen. This board is then mounted on the radiation-test-board in Figure 6. Specific values for the capacitances and inductances were calculated for each board to ensure a worst-case electrical stress while maintaining stability of the device. The biasing can flexibly be adjusted by jumpers and relays. The relays can be used to switch between the DUTs. In addition, the parameters of the device can be measured individually,

and the device can be enabled and disabled. The relays are controlled outside the chamber with a specific designed relay-control-board.

Figure 5: Visualization of the radiation-test-boards

Figure 6: Top-side (left) and bottom-side (right) of the LT8610 test board

In Figure 7 an overview with the important capacitances is given. The value of the output capacitance is calculated to Cout = 80 μ F, the input capacitance is Cin = 30 μ F the output Inductance is Lout = 24 μ H. The input & output conditions are summarised together with the results in Table 8.

Figure 7: Simplified test setup with

with varying input and output conditions described in Table 8.

6.3. Measurement

As stated above, the use of relays allows an individual measurement for each DUT on the radiation-test-boards. All-important measurable device parameters are provided in Table 4.

Table 4: Measurement Parameters

PIN/Parameter	Description	I/O	Measured	Type of Measurement
EN	Enable input pin	I	no	-
Vin	Supply input	T	yes	Input Voltage & Current
PVin	Power input	T	yes	Voltage & Current
SW	Switching node	0	yes	SW Voltage & (Frequency)
BST	Bootstrap pin	I	no	-
OCP_SEL	OCP select (here GND for 3 A)	I	no	-

MODE	Auto selected (PWM, LLM) left open	I	no	-
SSCG	Spread Spectrum (deactivated)		no	-
RESET	Reset		yes	Voltage
Vout_dis	Discharges Vout	0	no	-
VOUT_SNS	Used for OVP, SCP	I	no	-
FB	Feedback pin	I	no	-
VREG	Output internal LDO	0	no	-
VCC	input internal LDO	I/O	no	-
Vout	Filtered output voltage		yes	Voltage

6.4. Acquisition of Data

The most important parameter of the DUT is the output voltage. Therefore, a trigger of the oscilloscope is set to the output voltage to observe whether the parameters are within the operating range. Also triggers on the PG have been set. As soon as the output voltage or PG voltage leaves the operating range, the oscilloscope acquires the data of SW pin, Vcc pin, Pgood pin and the output voltage. During the acquisition, the flux of the beam was adapted to not oversaturate the scope. That meaning, the saving time of the acquisition lead to the adjustment of the flux in such a way, that a safe acquisition of every SET was possible without the danger of losing the acquisition of other SETs. In addition, current measurements have been carried out to observe overcurrent situations, and, in the event of an overcurrent event, an internal designed delatching system was used to power off the device quickly to prevent a destruction in the event of a Single Event Latch up.

7. SINGLE EVENT EFFECTS RESULTS

7.1. Non-destructive Single Event Effects Results

In Table 5 an overview of the kind and number of the non-destructive SEEs is given. All changes in the output voltage are due to functional interrupts of the switching of the LT7101. NDSEE were solely captured during irradiation under Rhodium and not under Xenon.

There are different kinds of SEFIs measured and presented in Table 5. Each SEFI type was grouped based on the different behaviours of the device. No Power Cycle SEFI was measured during the irradiation. In Table 6 the number and kind of observed SETs is visualized. The number of events achieved was a trade-off between having enough statistical data & overall beamtime schedule. The observed SEFIs are dependent on the chosen Soft Start (SS) time. As can be seen in Figure 8, this takes the longest for the device to be operable again. A cross section and an upper bound cross section, calculated with the Upper-N_{events} is presented in Table 5 and 6 and is calculated as follows [3]:

 $UpperN_{events} = 0.5 * CHISQ.INV.RT((1 - CL)/2, 2x(N_{events} + 1)),$

With:

- *UpperN*_{events}, the upper limit of the confidence interval *N*_{events} of observed.
- *CHISQ.INV.RT*, returns the inverse of the right-tailed probability of the chi-squared distribution.
- *CL*, Confidence Limits, here the 95% confidence limit shall be used.
- *N*_{events}, the number of observed events.

Table 5: Description of the measured non-destructive SEFIs under Rh-ion irradiation and an Input voltage of 12 V and outputcurrent of 0.6 A

SEFIS with effect on Vout	Reference Figure	Cross section cm ²	Upper- bound cross- section cm ²	Fluence in ions/cm ²	Maximum duration of SEFI in s	Number (#) of Events	Description
Auto SEFI	Fig. 8.	$1.22 \cdot 10^{-3}$	$1.32 \cdot 10^{-3}$	$5 \cdot 10^{6}$	Up to 3.10 ⁻²	612	decrease to 0.5 V of nominal 5 Vout
Reset SEFI	-	3.8 · 10 ⁻⁶	5.8 · 10 ⁻⁶	$5 \cdot 10^{6}$	Until reset	19	Shut down of the device, reset over enable pin necessary
Power Cycle SEFI	-	0	3.69 · 10 ⁻⁵	$5 \cdot 10^{6}$	Until PC	0	Shut down of the device, full power cycle necessary
Power Good SEFI		0	3.69 · 10 ⁻⁵	$5 \cdot 10^{6}$	Until reset	0	Leads to a PG low signal with no effect on Vout or other parameters, reset via the enable pin necessary

Table 6: Description of the measured non-destructive SE	SEEs under Rh-ion irradiation and an Input voltage of 12 V and output
CL	current of 0.6 A

SETs with effect on Vout	Reference Figure	Cross section cm ²	Upper- bound cross- section cm ²	Fluence in ions/cm ²	Maximum duration of SEFI in s	Number (#) of Events	Description
Overvoltage SET	Fig. 7.	4 · 10 ⁻⁶	4.18.10-6	$5 \cdot 10^{6}$	Up to 1.10-4	12	Increase of nominal 5 V out
Undervoltage SET	Fig. 8.	52.4 · 10 ⁻³	1.48 \cdot 10^{-3}	$5 \cdot 10^{6}$	Up to 7.10-4	262	decrease to 4 V of nominal 5 Vout

Different Kind of SETs can be observed on all devices. The undervoltage SET is a decrease of up to 2.9 V of the nominal 3.3 V. An example is visible in Figure 8.

Auto-SEFIs and reset- SEFIs can be observed on all DUTs. All SEFIs that lead to a shutdown are similar on the negative edges. This effect is due to a shutdown of the devices. As an example, typical SEFIs are shown in **Figure 8**. The figure shows an overlay of all SEFIs during a run. Once triggered, the auto-SEFI causes the device to shut down until a low voltage, about 2 V, is reached. The device then resumes back to normal operations automatically. The reset-SEFI can be observed as well and leads to a complete shutdown. After a reset or power cycle, the device restarts normally with the set soft start time, that was set via external capacitors. As soon as the output voltage leaves the nominal operating range, the PG pin triggers.

Figure 8: Vout SEFI of the LT7101 after a overvoltage condition of 6 V instead the applied 5 Vout that led to the shutdown of the device

7.2. DSEE Results

7.2.1. Latchups*

*A high inrush current was observed together with the overvoltage situations. However, since the exact functionality is not clear it might not be a Latch-up but another effect with a similar behaviour.

The LT7101 experience latchups^{*} during irradiation. With the used delatching system, a destructive event could be prevented. Without the delatching system the devices got destroyed. The Latch-ups led to high overcurrent spikes that potentially harm the device and the load. The number of SELs are indicated in the Safe Operating Area tables stated in the next chapter. In Figure 9 example of latchups are shown. A fast and constant high increase in the voltage and an inrush current in the device have been observed. The PG pin indicated low for a short time and went high again indicating wrongfully a correct functionality. There are different kind of overvoltage situations that went to different heights.

Figure 9: output voltage during multiple latchups of the LT7101 at Vout of 5 V, Vin of 12 V and lout of 0.6 A

7.2.2. Destructive Events

The device was tested against DSEE during Rh-ion irradiation at a normal incidence angle of 0. In Table 7 a SOA is given. At an input voltage of 19 V and a low load the device survived

the Rh-ion irradiation at an incident angle of 0. In Table 8 the SOA during Xe-Ion irradiation is given The reached fluence of all three devices was $10 \cdot 10^7$ ions/cm².

Vin (LET 46	Incident Angle @ 0°											
MeV · cm²/mg)	Low load (0.06 A)	High load (0.6 A)	Very High Load (1 A)									
10V												
12V												
15V												
19V		S3, S4 (5, 10 SEL)	S4 (10 SEL)									
24V			<u>52</u>									
30V			\$1									
40V												

Table 7: DSEEs and Safe Operating Area during Rh-ion irradiation with Vout 5 V

Table 8: DSEEs and Safe Operating Area during Xe-ion irradiation

Vin (LET 60	Incident Angle @ 0°												
MeV · cm²/mg)	Low Ioad (0.06 A)	High Ioad (0.6 A)	Very High Load (1 A)										
10V													
12V													
15V			S5, S6 (10 SEL)										
19V			\$ 4										
24V													
30V													
40V													

In Figure 9 a visualization of the SOA is given.

Figure 10. Safe Operating Area of the LT8610 with the Unsafe are (red), safe for high-risk missions (yellow), and safe area (green)

8. CONCLUSION

The aim of this test campaign is to evaluate the radiation hardness of the COTS LT7101 buck converter component tested at 2 LET and room temperature against NDSEE and DSEE. The component showed DSEE outside of the safe operating area. The SOA can be defined as follows:

- 15 V and 1 A for an LET of 62 $MeV \cdot cm^2/mg$
- 19 V and 1 A for an LET of 46 $MeV \cdot cm^2/mg$

The component showed not only DSEE but potentially SELs and a variety of non-destructive effects all of which need consideration in assessing the use of this part. The devices exhibit overvoltage situations that could potentially damage the load. In Table 10 a SEE summary is given.

The data provided in the report should be handled with caution considering traceability challenges in the use of COTS. However, the data gives an overview of different kinds of SEE and allows preparation for validation test campaigns and be able to identify possible mitigation techniques.

Table 9: SEE Summary

Item	Description
Aim	SEE sensitivity evaluation of different synchronous buck converter devices for destructive SEE and SET
Biasing Conditions	 various input voltages and output currents steady output voltage (5 V) and steady output switching frequency
Sample size	3 devices to be tested for each final biasing condition for result confirmation
LET	46 MeV $\cdot \frac{\text{cm}^2}{\text{mg}}$, 60 MeV $\cdot \text{cm}^2/\text{mg}$
Fluence	 10⁷ ions/cm⁻² for DSEE various for SET and SEFI characterization
Environmental condition	Room temperature condition
Results	Safe Operating Area for DSEE 1. 1 A and 15 Vin @ 62 MeV · $\frac{cm^2}{mg}$ 2. 1 A and 19 Vin @ 46 MeV · $\frac{cm^2}{mg}$.Soft-error & non-destructive SEL sensitivity (Rh irradiation): 1. Shutdown-SEFI, Reset-SEFI 2. Undervoltage SET, Overvoltage SET 3. SELs observed

9. REFERENCES

- [1] UCLouvain, Heavy Ion Facility, Heavy Ion Facility (HIF) | UCLouvain
- [2] Analog Devices, LT7101 105 V, 1A, Low EMI Synchronous Step-Down Regulator with Fast Current Programming, LT7101 (Rev. 0) (analog.com)
- [3] ESCC, Single Event Effect Test Method and Guidelines, ESCC Basic specification No. 25100

10. ANNEX

In the following tables the whole test campaign including different COTS devices is given.

Run	Facility log #	Reminder Philipp file	DUT	Vinput	Rout(Ohm)	< Pitch (1)	Title (°) Vacuum (V/N)2	Bea colli tio (Sha , size posi	m na pe & tio	Energy (MeV)	LET Normal in Si (90°)	LET Effective (in SI)	Range (um)	Fluxtarget (/cm ² /s)	Fluence target(/cm²)	Duration Target (sec)	am Homogenity (%)	Type of test / Mode/SW tested	Scope Trigger	SEL current threshold (mA)	nominal current (mA)	Start time	Duration actual (sec)	Fluence actual (/cm²)	Cumulative Fluence (/cm ³)	Flux actual (/cm²/s)	Run dose (krad)	Total dose (krad)	Test OK/ NOK	Measured SEL level	# NDSEL (approximativ ely - to be postreated)	# DSEE (SEGR/SEB /DSEL) (approxima tively)	# SET (approxima tively)	# auto-SEFI (approxima tively)	# soft-SEFI (approximati vely)	# PC-SEFI (approxima tively)	# Other SEE (approxim atively)
21	21	ОК	LT7101 - S1 (new)	30	1A	0	0 Ye	s C2'	2 R	h 95	7 46	46	87	1.00E+03	1.00E+07	10000	10	DSEE SoA.	Vout pos. @ 5.3V	700	130.00	18:30	213	8.63E+04	8.63E+04	405.16432	6.37E-02	6.37E-02	ок			1 DSEE					
22	22	ОК	LT7101 - S2 (new)	24	1A	0	0 Ye	s C2'	2 R	h 95	7 46	46	87	1.00E+04	1.00E+07	1000	10	DSEE SoA.	Vout pos. @ 5.3V	700	130.00	18:36	595	5.04E+05	5.04E+05	847.05882	3.72E-01	#REF!	ок								
23	23	ОК	LT7101 - S3 (new)	19	1A	0	0 Ye	rs C2'	2 R	h 95	7 46	46	87	1.00E+04	1.00E+07	1000	10	DSEE SoA.	Vout pos. @ 5.3V, then PG neg @ 0.2V.	700	200.00	18:47		1.00E+07	1.00E+07	#DIV/01	7.38E+00	#REF!	ок			SEL: 5			2		
24	24	ОК	LT7101 - S4 (new)	19	1A	0	0 Ye	5 C2'	2 R	h 95	7 46	46	87	1.50E+04	1.00E+07	666.7	10	DSEE SoA.	Vout neg. @ 4.5V	700	200.00	19:40	662	1.00E+07	1.00E+07	15105.74	7.38E+00	7.38E+00	ок			SEL: 10			0		
33	33	ОК	LT7101 - S4 (new)	19	2A	0	0 Ye	s C2'	2 X	99	5 63	63	73	1.50E+04	1.00E+07	666.7	10	DSEE SoA.	Vout pos. @ 5.5V	400	200.00	22:30	260	2.38E+06	2.38E+06	9153.8462	2.38E+00	2.38E+00	ок			SEL: 7 (at SELth twice)					
34	34	ОК	LT7101 - S3 (new)	15	2A	0	0 Ye	-5 C2'	2 X	99	5 63	63	73	1.50E+04	1.00E+07	666.7	10	DSEE SoA.	Vout pos. @ 5.5V	400	260.00	22:38	575	2.39E+06	2.39E+06	4156.5217	2.39E+00	2.39E+00	ок			SEL: 7+2 (at the same time)+ 15			0		
35	35	ОК	LT7101 - S5 (new)	15	2A	0	0 Ye	s C2'	2 X	99	5 63	63	73	1.50E+04	1.00E+07	666.7	10	DSEE SoA.	Vout pos. @ 5.5V	400	250.00	22:50	848	1.00E+07	1.00E+07	11792.453	1.00E+01	1.00E+01	ок			SEL: 19+8+29			0		
39	1	ОК	LT7101 - S6	15	1A	0	0 Ye	s C2'	2 X	e 99	5 63	63	73	1.50E+04	1.00E+07	666.7	10	Confirmation run	Vout pos. @ 5.5V	400	215.00	12:23	957	1.00E+07	1.00E+07	10449.321	1.00E+01	1.00E+01	ок			SEL: 2				7 then too many to count	
63	25	ОК	LT7101 - SS*	12V, then 15V, then 19V.	1A	90	45 Ye	:s C2'	2 R	h 95	7 46	65	87	1.50E+04	1.00E+07	666.7	10	Testing with tilt 45 and pitch 90*	Vout pos. @ 5.5V	1000	420.00	20:03	1174	6.90E+06	6.90E+06	5877.3424	5.09E+00	5.09E+00	ок							1	