

estec

European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The NetherlandsO T +31 (0)71 565 6565 F +31 (0)71 565 6040 www.esa.intO

DOCUMENT

SEL Heavy Ion Test Report of Maxim HI-201 Quad SPST CMOS Analog Switch

Prepared byCesar Boatella, Michele MuschitielloReferenceESA-TEC-QEC-LAB-TR-1436Issue1Revision0Date of Issue08/02/2016StatusDocument TypeDistributionTR

APPROVAL

Title SEL Heavy Ion Test Report of Maxim HI-201 Quad SPST CMOS Analog Switch							
Issue 1	Revision 0						
Author Cesar Boatella, Michele Muschitiello (TEC-QEC)	Date 08/02/2016						
Approved by Christian Poivey	Date 08/02/2016						

CHANGE LOG

Reason for change	Issue	Revision	Date		

CHANGE RECORD

Issue 1	Revision 0						
Reason for change	Date	Pages	Paragraph(s)				

Table of contents:

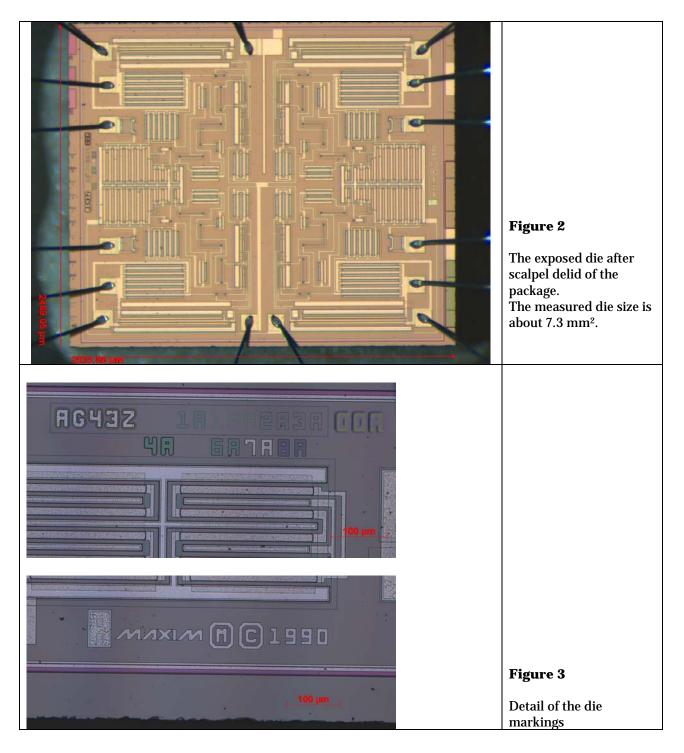
INTRODUCTION	4
APPLICABLE DOCUMENTS	4
DEVICES TESTED	4
TEST FACILITY	6
TEST CONDITIONS	7
TEST METHOD	7
TEST BOARD & FINAL TEST SETUP	9
TEST RESULTS	. 10
APPENDIX	
	INTRODUCTION

1 INTRODUCTION

This study was undertaken in the frame of the Aeolus project to determine the single event latch-up susceptibility of Maxim HI-201 Quad SPST CMOS Analog Switch. The device was monitored for destructive events induced by exposing it to a heavy ion beam at the UCL Heavy ion facility.

2 APPLICABLE DOCUMENTS

AD1: ESCC25100 Single Event Effects Test Method and Guidelines AD2: H-201 Datasheet, year 1990 version.


3 DEVICES TESTED

Part Type	HI-201
Manufacturer	Maxim
Part Function	Quad SPST CMOS Analog Switch
Technology	CMOS
Date Code	6C1228
Part Marking	MAXIM 7705302EA
Package	CERDIP 16

The parts were mechanically delidded with a scalpel after it had been soldered on the test board.

4 **TEST FACILITY**

 $\label{eq:Facility: UCL HIF with high LET cocktail., the new high energy Xe beam has been used (Energy = 995MeV, LET = 62.5MeV.cm^2/mg, range = 73.1 \mu m)$

Flux: Maximum 1 x 10⁴ particles/cm²/s

Fluence: All tests were run up to a fluence of 1 x 10⁷ particles/cm²

Characteristics of HIF high LET cocktail ions is shown in the Table below.

Ion	Energy (MeV)						
¹³ C ⁴⁺	131	1.1	292				
²² Ne ⁷⁺	235	3	216				
⁴⁰ Ar ¹²⁺	372	10.2	117				
⁵⁸ Ni ¹⁸⁺	567	20.4	100				
⁸³ Kr ²⁵⁺	756	32.6	92				
Xe	995	62.5	73				

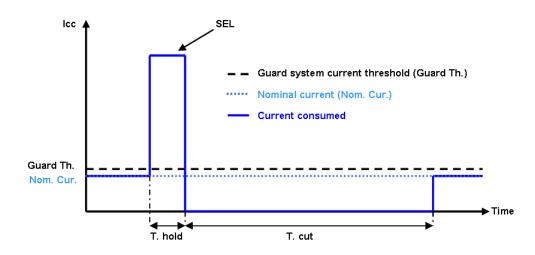
The following test equipment has been used:

- Keithley 2612B s/n 1285173 (last cal. 25.08.15)
- Guard Latch-up Tester 30463 TRAD
- Yokogawa scope-corder 850
- 34970 Data Acquisition unit with PT- 100 sensor for temperature control.
- E3646E Dual Power Supply.
- E3645 Single Power Supply.

5 **TEST CONDITIONS**

Test Temperature:	DUT wa	DUT was kept at stable temperature greater than 73°C under vacuum					
Bias Conditions:	DUT wi	ll be biased according to the following conditions:					
	\triangleright	V+= +15V, V-=15V (E3646E Dual Power Supply)					
	\succ	Digital input A1 and A3 to 5V (Keithley 2612B Channel B)					
	\succ	IN1 , IN2, connected to 15V (E3645 Single Power Supply)					
	\succ	Digital inputs A2 and A4 connected to GND					
	IN3, IN4 connected to 2V (Keithley 2612B Channel A)						
	\succ	OUT3, OUT4 connected to GND via 2 K Ω resistor					

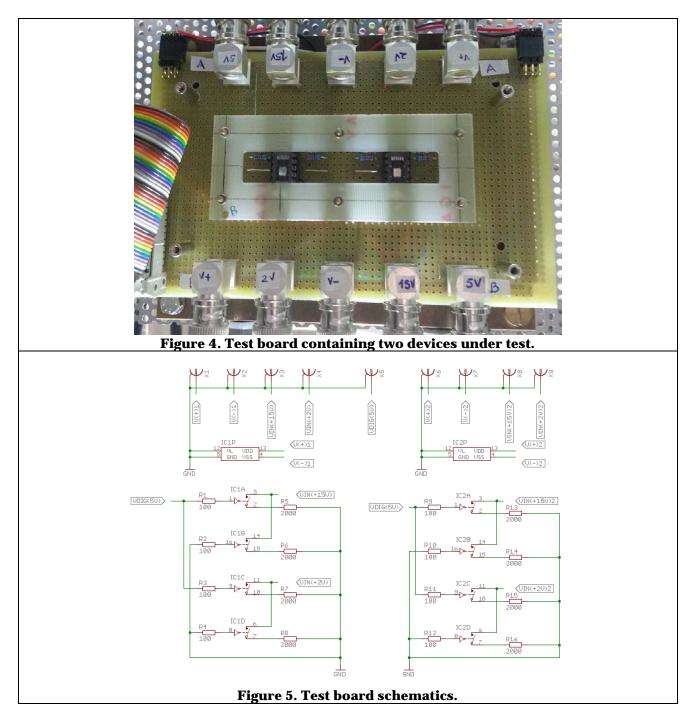
Operating frequency: Static condition.


6 TEST METHOD

The supplies (power and input) was be applied to the DUT through the GUARD system. The threshold current of the GUARD system was set to 10 mA for the supply and 20 mA for the inputs. If the supply power current or any of the two input currents exceeds the threshold, the GUARD system is triggered. Then, the GUARD system send a trigger command to the oscilloscope, maintains the power supply during a define "time hold" of 1ms, and if the current still exceeds the threshold after time hold, supply is cutoff during a "time cut" of 5 ms. Then the supply is restarted and the event is counted as a SEL. All power supply voltages were protected by GUARD during the test.

V+=+15V / I+= 0.3 mA / I+ threshold = 10 mAV-=-15V / I-= 0.3 mA / I- threshold = 10 mAVIN3=+15V, Vout3=-15V / IIn3= 3 mA / IIN3 threshold = 20 mAVIN4=+15V, Vout4=-15V / IIn4= 3 mA / IIN4 threshold = 20 mA

The figure below illustrates the latchup detection and protection scheme of the DUT.


A synoptic view of the test bench is given below:

7 TEST BOARD & FINAL TEST SETUP

The test board and related schematics are shown below:

The final test setup setup at UCL used during the test is shown below:

Figure 6. Overview of test setup used at UCL

8 TEST RESULTS

During testing, 4 devices were irradiated with Xenon beam at normal incidence up to a fluence of $1E7/cm^2$. No latch-up occurred during the experiment yielding a threshold LET for latch-up > $62.5MeV.cm^2/mg$.

9 CONCLUSIONS

The goal of this test was to assess the single event latch-up susceptibility of Maxim HI-201 Quad SPST CMOS Analog Switch. No latch-up event was detected up to an LET of 62.5MeV.cm²/mg, which is compliant with the AEOLUS requirements.

10 APPENDIX

The test sequence for the three tested devices is shown in the table below:

									Fluence					
				lon	Energy	LET	Angle	LETeff	(#/cm2)	TID				
Time	Run	DUT	lon	range	(MeV)	(MeVcm2/mg)	(deg)	(MeVcm2/mg)		(krad)	Vbias1	lsb1	Vbias2	lsb2
	11	part #1 position A (Temp 72C)	Xe	73um	995	62.5	0	62.5	1E7	10.00	15V	< 1mA	- 15V	< 1mA
16:05	12	part #2 position B (Temp 81C)	Xe	73um	995	62.5	0	62.5	1E7	10.00	15V	< 1mA	- 15V	< 1mA
16:50	13	part #3 position A (73.5temp C)	Xe	73um	995	62.5	0	62.5	1E7	10.00	15V	< 1mA	- 15V	< 1mA
17:05	14	part #4 position B (81 temp C)	Xe	73um	995	62.5	0	62.5	1E7	10.00	15V	< 1mA	- 15V	< 1mA