HEAVY IONS TEST REPORT

SINGLE EVENT EFFECTS RHFLVDS32A Rad-Hard Quad LVDS Receiver From ST Microelectronics

TRAD/TI/RHFLVDS32,	/XXX1/STM/LS/1307	Labège, September 04th, 2013	
Tests & radiations	Qualité APRIOR CERTIFICATION	TRAD, Bât Gallium 907, Voie l'Occitane - 31670 LABEGE France [∞] : 05 61 00 95 60 Fax: 05 61 00 95 61 Email: trad@trad.fr Web Site: www.trad.fr SIRET 397 862 038 00056 - TVA FR59397862038	
Written by	Verified by / Quality control	Approved by	
L. SALVY 14/10/2013	L. GOUYET 15/10/2013	Y. PADIÉ 16/10/2013	
Revision: 0			
To: ST Microelectronics Mrs CHAUMONT Géraldine		Project/Program: Ref:	

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

CONTENTS

1. In	ntroduction	4
2. D	Documents	4
2.1.	. Applicable documents	4
3. O	Drganization of Activities	4
4. P	Parts information	5
4.1.	. Device description	5
4.2.	. Identification	5
4.3.	. Procurement information	5
4.4.	. Sample Preparation	5
4.5.	. Sample pictures	6
4.	I.5.1. External view	6
4.	I.5.2. Internal view	6
5. D	Dosimetry and Irradiation Facilities	7
5.1.	. UCL Heavy Ion Test Facility (Université Catholique de Louvain - Belgique)	7
5.2.	. Dosimetry	7
5.3.	. Beam characteristics	8
The hig	ighlighted ion species in the table above were used to perform this SEE test	8
6. T	est Procedure and Setup	9
6.1.	. Test procedure	9
6	5.1.1. Description of the test method	9
6	5.1.2. SEL Test Principle	9
6	5.1.3. SET Test Principle	10
6.2.	. Test bench description	11
6	5.2.1. Preparation of test hardware and program	11
6	5.2.2. Test equipment identification	11
6	5.2.3. Test Bench description	12
6	5.2.4. Device setup and Test conditions	12
7. N	Ion conformance	13
8. R	RESULTS	14
8.1.	. Runs' Summary	14
8.2.	. SEL test results	16
8.3.	. SET tests results	16
8	3.3.1. SET Cross sections	16
8	3.3.2. Worst Cases SET Observed	19
9. C	Conclusion	20
10. Ap	ppendix 1 UCL beam calibration sheets	21

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

FIGURES

Figure 1: package marking	6
Figure 2: Internal overall view	6
Figure 3: Die marking	6
Figure 4 : Common SEL characteristic.	9
Figure 5: Output signal monitoring in High level configuration	10
Figure 6: Output signal monitoring in Low level configuration	10
Figure 7 : test system description	12
Figure 8: Test board schematic	13
Figure 9: High level SET cross section curve for RHFLVDS32	17
Figure 10: Low level SET cross section curve for RHFLVDS32.	18
Figure 11: SET curve, Heavy Ion ¹²⁴ Xe ²⁶⁺ (LET of 67.7MeV.mg/cm ²), Part 1, Run n°21, Event n°1	19
Figure 12: SET curve Heavy Ion ¹²⁴ Xe ²⁶⁺ (LET of 67.7MeV.mg/cm ²),, Part 1, Run n°22, Event n°2	19

TABLES

Table 1: Organization of activities	4
Table 2 : UCL cocktail M/Q=5	8
Table 3 : UCL cocktail M/Q=3.3	8
Table 4: High level SET detection threshold	12
Table 5: Low level SET detection threshold	12
Table 6: SEL detection threshold	12
Table 7: RHFLVDS31-32 first campaign test results	14
Table 8: RHFLVDS31-32 second campaign test results	15
Table 9: RHFLVDS32 High Level SET cross section results	16
Table 10: RHFLVDS32 Low Level SET cross section results	16

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

1. Introduction

This report includes the test results of the heavy ions Single Event Effects (SEEs) test sequence carried out on the RHFLVDS32A, a Rad-Hard Quad LVDS Receiver from ST Microelectronics.

This test was performed for ST Microelectronics on the RHFLVDS32A susceptible to show Single Event Latch-ups (SELs) and Single Event Transients (SETs) induced by heavy ions.

2. Documents

2.1. Applicable documents

Technical Proposal: TRAD/P/STM/4xLVDS/ER/310513 Rev.1

SEE Test Plan: RNS/GC/13-126-02 ce Rev2 of 12/06/2013.

Mail from Mr Croisat, dated july 26th, 2013, subject "RE: RHFLVDSC31 - RHFLVDSC32 Schema + Capture Ecrans".

Mail from Mr Croisat, dated august 2nd, 2013, subject "RE: [SEE] RHFLVDS R2D2 - RHFLVDS228A". Mail from Mrs Rousseau, dated september 10th, 2013, subject "Fwd: Manip IOL semaine 35. LVDS".

3. Organization of Activities

The relevant company has performed the following tasks during this evaluation:

1	Procurement of Test Samples	ST Microelectronics
2	Preparation of Test Samples (delidding)	ST Microelectronics
3	Preparation of Test Hardware and Test Program	TRAD
4	Samples Check out	TRAD
5	Accelerator Test	TRAD
6	Heavy Ion Test Report	TRAD

Table 1: Organization of activities

RHFLVDS32A

Rev: 0

4. Parts information

4.1. Device description

The RHFLVDS32A is a quad Low Voltage Differential Signaling (LVDS) receiver specifically designed, packaged and qualified for use in aerospace environment in low power and fast data transmission standard.

4.2. Identification

Type:	RHFLVDS32A
Manufacturer:	ST Microelectronics
Function:	Rad-Hard Quad LVDS Receiver

4.3. Procurement information

Packaging:	FP16
Sample size:	6 parts provided by ST Microelectronics.

4.4. Sample Preparation

All parts were delidded by ST Microelectronics.

A functional test sequence was performed on delidded samples and all parts provided by STMicroelectronics were functional.

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

4.5. Sample pictures

4.5.1. External view

No marking at the bottom of the package was observed.

Figure 1: package marking (Top View)

4.5.2. Internal view

Figure 3: Die marking

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

5. Dosimetry and Irradiation Facilities

The test was performed at U.C.L (Université Catholique de Louvain) on August 29th and 30th, 2013 and on October 07th and 08th, 2013. 4 delidded samples were irradiated.

5.1. UCL Heavy Ion Test Facility (Université Catholique de Louvain - Belgique)

The CYClotron of LOuvain la NEuve (CYCLONE) is a multi-particle, variable energy, cyclotron capable of accelerating protons (up to 85 MeV), alpha particles and heavy ions.

For heavy ions, the covered LET range is between 1.2 MeV.cm².mg⁻¹ and 67.7 MeV.cm².mg⁻¹. Heavy ions available are separated in two "Ion Cocktails" named M/Q=5 and M/Q=3.3.

One of the main advantages of the UCL Heavy Ion Test Facility is the fast changing of ion species. Within the same cocktail, it takes only a few minutes to change from one ion to another.

The chamber has the shape of a barrel stretched vertically; its internal dimensions are 71 cm in height, 54 cm in width and 76 cm in depth. One side flange is used to support the board frame (25 X 25 cm) and user connectors.

The chamber is equipped with a vacuum system.

5.2. Dosimetry

To control and monitor the beam parameters, a dosimetry box is placed in front of the chamber. It contains a faraday cup, 2 Parallel Plate Avalanche Counters (PPAC).

Two additional surface barrier detectors are placed in the test chamber.

The faraday cup is used during beam preparation at high intensity.

A beam uniformity measurement is performed with a collimated surface barrier detector. This detector is placed on a X and Y movement. The final profile is drawn and the \pm 10 % width is calculated. The Homogeneity is \pm 10 % on a 25 mm diameter.

During the irradiation, the flux is integrated in order to give the delivered total fluence $(particule.cm^{-2})$ on the device.

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

5.3. Beam characteristics

The beam flux is variable between a few particles $s^{-1}cm^{-2}$ and $1.8 \cdot 10^4 s^{-1}cm^{-2}$ depending on the device sensitivity.

Heavy ion characteristics are listed in the following tables:

lon	Energie	Range	LET		lon	Energie	Range	LET
1011	(MeV)	(µm(Si))	(MeV.cm².mg⁻¹)		1011	(MeV)	(µm(Si))	(MeV.cm².mg⁻¹)
¹⁵ N ³⁺	60	59	3.3		¹³ C ⁴⁺	131	292	1.1
²⁰ Ne ⁴⁺	78	45	6.4		²² Ne ⁷⁺	235	216	3
⁴⁰ Ar ⁸⁺	151	40	15.9		40Ar ¹²⁺	372	117	10.2
⁸⁴ Kr ¹⁷⁺	305	39	40.4		⁵⁸ Ni ¹⁸⁺	567	100	20.4
¹²⁴ Xe ²⁵⁺	420	37	67.7		⁸³ Kr ²⁵⁺	756	92	32.6
Table 2 : UCL cocktail M/Q=5			-		Table 3 : U	CL cocktail M/C)=3.3	

The highlighted ion species in the table above were used to perform this SEE test.

RHFLVDS32A

Rev: 0

6. Test Procedure and Setup

6.1. Test procedure

6.1.1. Description of the test method

The test was divided in two parts, with respect to reference or applicable documents:

- Runs were performed up to a fluence of 1.10⁷ cm⁻² with only SEL monitoring. This configuration allowed us to verify the latchup sensitivity of the device.
- Runs were performed up to a fluence of 1.10⁷ cm⁻² for the SET detection. A latchup monitoring was used during these tests in order to protect the component. This configuration allowed us to verify the SET sensitivity.

The test was terminated when the maximum fluence was reached or when we got about a hundred events.

6.1.2. SEL Test Principle

The test was performed at maximum operating voltage and temperature.

TRAD has developed a fully integrated test bench to perform Single Event Latchup tests (SEL). The GUARD system (Graphical Universal Autorange Delatcher) allows the user to easily protect his device under test and perform SEL characterization.

The power supply is applied to the device under test through the GUARD system.

The threshold current of the GUARD system is set according to the nominal current. If the nominal current exceeds the threshold current, the GUARD system is triggered and the event is counted as an SEL. Then, the GUARD system sends a trigger command to the oscilloscope, maintains the power supply during a defined 'Time hold' and cut off during a defined 'Time cut'. Then, the power supply is restarted with the nominal current expected consumption.

At the end of each run, the test program reads the oscilloscope's "Local Scope Counter" which represents the total event count and downloads the records currents waveforms to store them.

Figure 4 shows an example of the SEL detection.

Figure 4 : Common SEL characteristic.

TRAD - Bâtiment Gallium - 907 l'Occitane 31670 LABEGE CEDEX. Tel: (33) 5 61 00 95 60. Fax: (33) 5 61 00 95 61. EMAIL: trad@trad.fr

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

6.1.3. SET Test Principle

The GUARD system is always used on the component's power supply to detect SEL and to prevent the destruction of the device under test.

Single Event Transient is an event described by a voltage amplitude and a timing parameter.

To detect these events, the component's output voltage is monitored.

Two configurations were tested:

High level out of range:

Pulse width modifications are detected. If the high level time (T_H) is not comprised between T_H min threshold and T_H max threshold, an increment of the oscilloscope internal counter occurs and the trace is stored.

Figure 5: Output signal monitoring in High level configuration.

- <u>Low level out of range</u>:

Same as the High level configuration except we monitor the low level time.

Figure 6: Output signal monitoring in Low level configuration.

At the end of each run, the test program reads the oscilloscope's "Local Scope Counter" which represents the total event count and downloads the records currents waveforms to store them.

RHFLVDS32A

Rev: 0

6.2. Test bench description

6.2.1. Preparation of test hardware and program

TRAD has developed a specific test program and a specific motherboard to feed power supply to components.

The different outputs of the DUT are visualized using two oscilloscopes and curves are saved when an event occurs.

The test system is driven by a personal computer through a standard IEEE488 communication interface. All signals are delivered and monitored by this equipment and SEE curves are saved in its memory.

At the end of each test run, data is transferred to the hard disk for storage. An overall description of the test system is given in Figure 7.

6.2.2. Test equipment identification

The tests were carried out with evaluation test boards developed by TRAD.

COMPUTER	PO-TE-096
REF. TEST BOARD	TRAD/CT1/I/RHFLVDS31-32/FP16/APD/1307
EQUIPMENT	MI-52; MI-60; ME-44; ME-71; ME-79
TEST PROGRAM	RHFLVDS31-32_TI_XXX1_BI_V10

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

6.2.3. Test Bench description

6.2.4. Device setup and Test conditions

Trigger thresholds for SET test are defined in the following table:

Vcc	3.3V			
VOH Threshold	2.0V			
T _H max threshold	46ns			
T _H min threshold	48ns			
Temperature 25°C				
Table 4: High level SET detection threshold				

Vcc	3.3V
VOH Threshold	0.8V
T _L max threshold	47ns
T_L min threshold	49ns
Temperature	25°C

Table 5: Low level SET detection threshold

Trigger threshold for SEL test is defined in the following table:

Vcc	3.6V
I _{nominal}	20mA
Ithreshold	40mA
T _{hold}	1ms
T _{cut}	7ms
Temperature	125°C

Table 6: SEL detection threshold

RHFLVDS32A

Figure 8: Test board schematic

7. Non conformance

A Non conformance NC_20131016_LS_1 was created.

Non conformance description:

At the beginning of the first test campaign one of the two SET visualization oscilloscope broke down. Without this equipment, all the required SET runs couldn't be done in time during the first test campaign.

In accordance to the mail received from Mrs E. Rousseau dated September 10, 2013, a second test campaign was scheduled in order to get the remaining SET runs. During this second campaign, test sequence, test and measurement conditions were nominal.

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

8. **RESULTS**

8.1. Runs' Summary.

Hereafter you will find the Runs performed during the two test campaigns.

								RHFLVI SEL: VCC = 3.6V SET: VDD = 3.3	DS32 //T° V/T°	= 125°C = 25°C								LAT	CHUP					SE	т			
Run	LVDS31 LVDS32	Part	Config	т∘	lon	Energy (MeV)	Range (µm)	LET (MeV.cm²/mg)	Tilt (°)	Eff. LET (MeV.cm²/mg)	Eff. Range (µm Si)	Flux (φ) (cm ⁻² .s ⁻¹)	Time (s)	Run Fluence (Φ) (cm ⁻²)	Run Dose (krad)	Cumulated Dose (krad)	Vcc_31	Cross Section	Vcc_32	Cross Section	Out_1	Cross Section	Out_2	Cross Section	Out_3	Cross Section	Out_4	Cross Section
														High LET M/Q=5	i													
1	32	1	SEL	125	124Xe 26+	420	37	67.7	0	67.70	37.0	1.07E+04	936	1.00E+07	10.862	10.862	0	<1.00E-07	0	<1.00E-07	-	-	-	-	-	-	-	-
2	32	2	SEL	125	124Xe 26+	420	37	67.7	0	67.70	37.0	1.26E+04	795	1.00E+07	10.861	10.861	0	<1.00E-07	0	<1.00E-07	-	-	-	-	-	-	-	-
3	32	3	SEL	125	124Xe 26+	420	37	67.7	0	67.70	37.0	1.34E+04	748	1.00E+07	10.852	10.852	0	<1.00E-07	0	<1.00E-07	-	-	-	-	-	-	-	-
4	32	4	SEL	125	124Xe 26+	420	37	67.7	0	67.70	37.0	1.25E+04	799	1.00E+07	10.858	10.858	0	<1.00E-07	0	<1.00E-07	-	-	-	-	-	-	-	-
5	32	4	SEL	125	124Xe 26+	420	37	67.7	60	135.40	18.5	7.58E+03	1321	1.00E+07	21.696	32.554	0	<1.00E-07	0	<1.00E-07	-	-	-	-	-	-	-	-
6	32	3	SEL	125	124Xe 26+	420	37	67.7	60	135.40	18.5	7.68E+03	1303	1.00E+07	21.686	32.538	0	<1.00E-07	0	<1.00E-07	-	-	-	-	-	-	-	-
7	32	2	SEL	125	124Xe 26+	420	37	67.7	60	135.40	18.5	7.83E+03	1279	1.00E+07	21.684	32.545	0	<1.00E-07	0	<1.00E-07	-	-	-	-	-	-	-	-
8	32	1	SEL	125	124Xe 26+	420	37	67.7	60	135.40	18.5	7.55E+03	1326	1.00E+07	21.696	32.558	0	<1.00E-07	0	<1.00E-07	-	-	-	-	-	-	-	-
9	32	1	SET 1H	25	124Xe 26+	420	37	67.7	0	67.70	37.0	1.29E+04	776	1.00E+07	10.859	43.389	0	<1.00E-07	0	<1.00E-07	0	<1.00E-07	-	-	-	-	-	-
10	32	1	SET 1L	25	124Xe 26+	420	37	67.7	0	67.70	37.0	1.41E+04	710	1.00E+07	10.853	54.242	0	<1.00E-07	0	<1.00E-07	3	3.00E-07	-	-	-	-	-	-
11	32	1	SET 2H	25	124Xe 26+	420	37	67.7	0	67.70	37.0	1.36E+04	737	1.00E+07	10.855	65.097	0	<1.00E-07	0	<1.00E-07	-	-	0	<1.00E-07	-	-	-	-
12	32	1	SET 2L	25	124Xe 26+	420	37	67.7	0	67.70	37.0	1.37E+04	730	1.00E+07	10.853	75.950	0	<1.00E-07	0	<1.00E-07	-	-	U	<1.00E-07	-	-	-	-
13	32	1	SEI 3H	25	124Xe 26+	420	37	67.7	0	67.70	37.0	1.36E+04	736	1.00E+07	10.856	86.806	0	<1.00E-07	0	<1.00E-07	-	-	•	-	3	3.00E-07	-	-
14	32	1		25	124Xe 20+	420	37	67.7	0	67.70	37.0	1.40E+04	706	1.00E+07	10.000	97.072	0	<1.00E-07	0	<1.00E-07	-	-	•		2	2.00E-07	-	- 2.00E.07
10	32			25	124Xe 20+	420	37	07.7	0	67.70	37.0	1.42E+04	700	1.00E+07	10.009	100.001	0	<1.00E-07	0	<1.00E-07		-	•		-	-	<u> </u>	3.00E-07
10	32		JET 4L	20	12476 20+	420	31	07.7	U	07.70	37.0	1.30E+04	125	High Range M/Q=	10.000	119.300	U	<1.00E-07	U	<1.00E-07	-	-	-	-	-		U	<1.00E-07
17	32	1	SET 3H	25	83 Kr 25+	756	92	32.6	0	32.60	92.0	1 34E±04	748	1 00E±07	5 226	124 611	0	<1.00E-07	0	<1.00E-07	-				0	<1.00E-07	-	-
18	32	1	SET 3I	25	83 Kr 25+	756	92	32.6	ő	32.60	92.0	1.34E+04	748	1.00E+07	5 227	129.839	ő	<1.00E-07	0	<1.00E-07	-	-	-		0	<1.00E-07	_	-
19	32	2	SET 3H	25	83 Kr 25+	756	92	32.6	Ő	32.60	92.0	1.42E+04	707	1.00E+07	5 229	37 774	Ő	<1.00E-07	0	<1.00E-07	-	-	-		ů.	<1.00E-07	-	-
20	32	2	SET 3L	25	83 Kr 25+	756	92	32.6	Ő	32.60	92.0	1.49E+04	673	1.00E+07	5.226	43.000	ő	<1.00E-07	0	<1.00E-07	-	-	-		0	<1.00E-07	-	-
21	32	3	SET 3H	25	83 Kr 25+	756	92	32.6	Ő	32.60	92.0	1.37E+04	733	1.00E+07	5.225	37.763	Ő	<1.00E-07	0	<1.00E-07	-	-	-		0	<1.00E-07	-	-
22	32	3	SET 3L	25	83 Kr 25+	756	92	32.6	0	32.60	92.0	1.40E+04	714	1.00E+07	5.229	42,992	0	<1.00E-07	0	<1.00E-07	-	-	-	-	0	<1.00E-07	-	-
23	32	4	SET 3H	25	83 Kr 25+	756	92	32.6	0	32.60	92.0	1.30E+04	768	1.00E+07	5.227	37.781	Ō	<1.00E-07	0	<1.00E-07	-	-	-	-	0	<1.00E-07	-	-
24	32	4	SET 3L	25	83 Kr 25+	756	92	32.6	0	32.60	92.0	1.34E+04	747	1.00E+07	5.228	43.009	0	<1.00E-07	0	<1.00E-07	-	-	-	-	0	<1.00E-07	-	-

Table 7: RHFLVDS32 first campaign test results

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

Rev: 0

Tests & radiations

RHFLVDS32A

	RHFLVDS32 SET: VDD = 3.3V / T* = 25°C												LATCHUP				SET											
Run	LVDS31 LVDS32	Part	Config	т∘	lon	Energy (MeV)	Range (µm)	LET (MeV.cm²/mg)	Tilt (°)	Eff. LET (MeV.cm²/mg)	Eff. Range (µm Si)	Flux (φ) (cm ⁻² .s ⁻¹)	Time (s)	Run Fluence (Φ) (cm ⁻²)	Run Dose (krad)	Cumulated Dose (krad)	Vcc_31	Cross Section	Vcc_32	Cross Section	Out_1	Cross Section	Out_2	Cross Section	Out_3	Cross Section	Out_4	Cross Section
	High LET M/Q=5																											
25	32	2	SET 1L 3H	25	124Xe 26+	420	37	67.7	0	67.70	37.0	1.51E+04	663	1.00E+07	10.863	53.864	0	<1.00E-07	0	<1.00E-07	1	1.00E-07	-	-	0	<1.00E-07	-	-
26	32	3	SET 1L 3H	25	124Xe 26+	420	37	67.7	0	67.70	37.0	1.52E+04	660	1.00E+07	10.861	53.853	0	<1.00E-07	0	<1.00E-07	2	2.00E-07	-	-	0	<1.00E-07	-	-
27	32	4	SET 1L 3H	25	124Xe 26+	420	37	67.7	0	67.70	37.0	1.52E+04	659	1.00E+07	10.863	53.872	0	<1.00E-07	0	<1.00E-07	0	<1.00E-07	-	-	0	<1.00E-07	-	-
28	32	1	SET 1L 3H	25	124Xe 26+	420	37	67.7	60	135.40	18.5	7.61E+03	1315	1.00E+07	21.683	151.522	0	<1.00E-07	0	<1.00E-07	1	1.00E-07	-	-	0	<1.00E-07	-	-
29	32	2	SET 1L 3H	25	124Xe 26+	420	37	67.7	60	135.40	18.5	7.69E+03	1302	1.00E+07	21.684	75.548	0	<1.00E-07	0	<1.00E-07	0	<1.00E-07	-	-	3	3.00E-07	-	-
30	32	3	SET 1L 3H	25	124Xe 26+	420	37	67.7	60	135.40	18.5	7.60E+03	1318	1.00E+07	21.693	75.546	0	<1.00E-07	0	<1.00E-07	4	4.00E-07	-	-	0	<1.00E-07	-	-
31	32	4	SET 1L 3H	25	124Xe 26+	420	37	67.7	60	135.40	18.5	7.65E+03	1308	1.00E+07	21.685	75.557	0	<1.00E-07	0	<1.00E-07	2	2.00E-07	-	-	0	<1.00E-07	-	-
										Table 0	DUFIN	0000		al														

Table 8: RHFLVDS32 second campaign test results

No SEL events were detected during this test.

SET events were detected during this test.

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

8.2. SEL test results.

The SEL test was performed at 125°C.

No SEL was observed during this test under Xenon irradiation with a total fluence equal to 1E+7 cm⁻²:

- with a particle angle of 60° (LET = $135.4 \text{ MeV.cm}^2/\text{mg}$ and range = 18.5μ m).
- with a particle angle of 0° (LET = 67.7 MeV.cm²/mg and range = 37μ m).

8.3. SET tests results

The SET test was performed at 25°C, two configurations were tested on the outputs.

SETs were observed during the irradiation until the Krypton Heavy Ion (LET = $32.6 \text{ MeV.cm}^2/\text{mg}$ and range = 92μ m).

8.3.1. SET Cross sections

LET Eff	RHFLVDS32 High Level SET Cross Section (cm ²)								
(MeV.cm².mg⁻¹)	N° 1	N° 2	N°3	N° 4					
135.4	< 1.0E-07	3.0E-07	< 1.0E-07	< 1.0E-07					
67.7	3.0E-07	< 1.0E-07	< 1.0E-07	< 1.0E-07					
32.6	< 1.0E-07	< 1.0E-07	< 1.0E-07	< 1.0E-07					

Table 9: RHFLVDS32 High Level SET cross section results

LET Eff	RHFLVDS32 Low Level SET Cross Section (cm ²)								
(MeV.cm².mg⁻¹)	N° 1	N° 2	N°3	N° 4					
135.4	1.0E-07	< 1.0E-07	4.0E-07	2.0E-07					
67.7	3.0E-07	1.0E-07	2.0E-07	< 1.0E-07					
32.6	< 1.0E-07	< 1.0E-07	< 1.0E-07	< 1.0E-07					

Table 10: RHFLVDS32 Low Level SET cross section results

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

The following figures present the cross section of the SET event on the RHFLVDS32A part. Points represented by an arrow pointing down indicate that no events were observed at the corresponding LET. The evaluated cross section is then lower than 1.00 10⁻⁷ cm⁻², value corresponding to one event at maximum fluence.

Figure 9: High level SET cross section curve for RHFLVDS32.

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

On these figures, we obverse that some points at LET 135.4 have a lower cross section than points at inferior LET. This phenomenon may be due to the low penetration of the tilted Xe, which is about 18.5 μ m. The tilted Xe runs were an express request of our customer.

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

8.3.2. Worst Cases SET Observed

The worst case on High level mode occurs on Part N°1 during run n°13 event n°1 (Xe, 67.7 MeV.cm²/mg).

Figure 11: SET curve, Heavy Ion ¹²⁴Xe²⁶⁺ (LET of 67.7MeV.mg/cm²), Part 1, Run n°13, Event n°1.

Figure 12: SET curve Heavy Ion ¹²⁴Xe²⁶⁺(LET of 67.7MeV.mg/cm²),, Part 1, Run n°14, Event n°2

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

9. Conclusion

Heavy ions test were performed on RHFLVDS32A. The aim of the test was to evaluate the sensitivity of the device versus SEL and SET.

No SELs were observed with the LET value of 67.7MeV.cm²/mg (Xenon heavy ions).

SETs were observed on the RHFLVDS32A with a minimum LET of 67.7 MeV.cm²/mg. No SET was detected with a LET of 32.6 MeV.cm²/mg.

Ref: TRAD/TI/RHFLVDS32/XXX1/STM/LS/1307 Date: September 04th, 2013

RHFLVDS32A

Rev: 0

10.Appendix 1 UCL beam calibration sheets

CRC Louvain la Neuve

FICHE DE CALIBRATION DU FAISCEAU HIF

Date de calibration : 29/08/2013 Semaine : W35 Opérateur(s) responsable(s) de la calibration : ML-JVH-KS Cocktail : M/Q = 5 - M/Q = 3,33

I. Profil du faisceau

Le profil du faisceau est mesuré à l'aide d'un détecteur de type PIPS. Le détecteur est centré dans la chambre d'irradiation et réalise 9 mesures selon les axes X et Y Le faisceau doit être homogène à +/-10% sur 20 mm aussi bien horizontalement que verticalement.

1) Profil Horizontal

Faisceau de référence :	$^{40}\text{Ar}^{12+}$ 372 MeV
Homogénéité horizontale :	24 mm
Valeur de X minimum (mm) :	-12 mm
Valeur X maximum (mm) :	+12 mm

CRC Louvain la Neuve

2) Scan Vertical

Faisceau de référence :	$^{40}\text{Ar}^{12+}$ 372 MeV
Homogénéité verticale :	24 mm
Valeur de Y minimum (mm) :	-12 mm
Valeur Y maximum (mm) :	+12 mm

3) Profil transverse du faisceau mesuré avec le SEU Monitor

En plus de la procédure de scan, le profil du faisceau est contrôlé à l'aide du SEU Monitor fourni par l'ESA (20mm*20 mm). Tous les faisceaux du cocktail sont contrôlés par cette méthode. Seul le profil du faisceau de référence est présenté dans ce document mais les profils des autres ions du cocktail sont disponibles sur demande de l'utilisateur.

II. Calibration en énergie du faisceau

L'énergie de chaque faisceau est contrôlée par un chaine de mesure comprenant un détecteur de type PIPS, une chaine d'amplification et un analyseur multicanal avec son logiciel associé.

<u>Cocktail</u>	<u>Particule</u>	<u>Energie</u> <u>DUT</u> (MeV)	Energie <u>mesurée</u> (MeV)
	¹³ C ⁴⁺	131	130
	²² Ne ⁷⁺	235	234
M/Q = 3	⁴⁰ Ar ¹²⁺	372	371
	⁵⁸ Ni ¹⁸⁺	567	562*
	⁸³ Kr ²⁵⁺	756	749*

*Différence inhérente au détecteur PIPS "pulse height defect", liée notamment à un défaut de collection de charges pour les ions les plus lourds.

III. SEU MONITOR

Une vérification supplémentaire est réalisée à l'aide d'un SEU monitor fourni par l'ESA et servant de référence pour toutes les installations European Component Irradiation Facilities (ECIF). Celle-ci permet de vérifier la méthode de mesure dans son ensemble. Chaque ion du cocktail est mesuré à l'aide de ce composant de référence.

<u>Courbe des sections efficace</u> $\sigma_{(LET)}$

IV. Validation de la calibration

Remarque

Directeur du CRC

29 août 2013

M Loiselet

CRC Louvain la Neuve

FICHE DE CALIBRATION DU FAISCEAU HIF

Date de calibration : 26/08/2013 Semaine : W35 Opérateur(s) responsable(s) de la calibration : ML-JVH-KS Cocktail : M/Q = 5 - M/Q = 3,33

I. Profil du faisceau

Le profil du faisceau est mesuré à l'aide d'un détecteur de type PIPS. Le détecteur est centré dans la chambre d'irradiation et réalise 9 mesures selon les axes X et Y Le faisceau doit être homogène à +/-10% sur 20 mm aussi bien horizontalement que verticalement.

1) Profil Horizontal

Faisceau de référence :	$^{40}\text{Ar}^{8+}$ 151 MeV
Homogénéité horizontale :	24 mm
Valeur de X minimum (mm) :	-12 mm
Valeur X maximum (mm) :	+12 mm

CRC Louvain la Neuve

2) Scan Vertical

Faisceau de référence :	$^{40}\text{Ar}^{8+}$ 151 MeV
Homogénéité verticale :	24 mm
Valeur de Y minimum (mm) :	-12 mm
Valeur Y maximum (mm) :	+12 mm

3) Profil transverse du faisceau mesuré avec le SEU Monitor

En plus de la procédure de scan, le profil du faisceau est contrôlé à l'aide du SEU Monitor fourni par l'ESA (20mm*20 mm). Tous les faisceaux du cocktail sont contrôlés par cette méthode. Seul le profil du faisceau de référence est présenté dans ce document mais les profils des autres ions du cocktail sont disponibles sur demande de l'utilisateur.

II. Calibration en énergie du faisceau

L'énergie de chaque faisceau est contrôlée par un chaine de mesure comprenant un détecteur de type PIPS, une chaine d'amplification et un analyseur multicanal avec son logiciel associé.

<u>Cocktail</u>	<u>Particule</u>	<u>Energie</u> <u>DUT</u> (MeV)	Energie <u>mesurée</u> (MeV)
	$^{15}N^{3+}$	60	60
	20 Ne ⁴⁺	78	78
M/Q = 5	$^{40}\text{Ar}^{8+}$	151	151
	84 Kr ¹⁷⁺	305	297*
	124 Xe ²⁵⁺	420	399*

*Différence inhérente au détecteur PIPS "pulse height defect", liée notamment à un défaut de collection de charges pour les ions les plus lourds.

III. SEU MONITOR

Une vérification supplémentaire est réalisée à l'aide d'un SEU monitor fourni par l'ESA et servant de référence pour toutes les installations European Component Irradiation Facilities (ECIF). Celle-ci permet de vérifier la méthode de mesure dans son ensemble. Chaque ion du cocktail est mesuré à l'aide de ce composant de référence.

<u>Courbe des sections efficace</u> $\sigma_{(LET)}$

IV. Validation de la calibration

Remarque

Directeur du CRC

26 août 2013

M Loiselet

CRC Louvain la Neuve

FICHE DE CALIBRATION DU FAISCEAU HIF

Date de calibration : 7/10/2013 Semaine : W41 Opérateur(s) responsable(s) de la calibration : KS-GU-LS-PJ-JVH Cocktail : M/Q = 5 - M/Q = 3,33

I. Profil du faisceau

Le profil du faisceau est mesuré à l'aide d'un détecteur de type PIPS. Le détecteur est centré dans la chambre d'irradiation et réalise 9 mesures selon les axes X et Y Le faisceau doit être homogène à +/-10% sur 20 mm aussi bien horizontalement que verticalement.

1) Profil Horizontal

Faisceau de référence :	⁴⁰ Ar ⁸⁺ 151 MeV
Homogénéité horizontale :	24 mm
Valeur de X minimum (mm) :	-12 mm
Valeur X maximum (mm) :	+12 mm

CRC Louvain la Neuve

2) <u>Scan Vertical</u>

$^{40}\text{Ar}^{8+}$ 151 MeV
24 mm
-12 mm
+12 mm

3) Profil transverse du faisceau mesuré avec le SEU Monitor

En plus de la procédure de scan, le profil du faisceau est contrôlé à l'aide du SEU Monitor fourni par l'ESA (20mm*20 mm). Tous les faisceaux du cocktail sont contrôlés par cette méthode. Seul le profil du faisceau de référence est présenté dans ce document mais les profils des autres ions du cocktail sont disponibles sur demande de l'utilisateur.

COKTAIL :	M/Q = 5	
ION :	40Ar8+	
ENERGIE DUT :	151	MeV
LET :	20,2	Mev/(mg/cm ²)
TOTAL WORD ERROR :	137337	
TOTAL BIT ERROR :	141346	
FLUENCE :	5,00E+05	Part/cm ²
CROSS SECTION :	1,685E-08	cm²/bit

II. Calibration en énergie du faisceau

L'énergie de chaque faisceau est contrôlée par un chaine de mesure comprenant un détecteur de type PIPS, une chaine d'amplification et un analyseur multicanal avec son logiciel associé.

<u>Cocktail</u>	<u>Particule</u>	<u>Energie</u> <u>DUT</u> (MeV)	Energie <u>mesurée</u> (MeV)
	$^{15}N^{3+}$	60	61
	20 Ne ⁴⁺	78	77
M/Q = 5	$^{40}{\rm Ar}^{8+}$	151	144*
	$^{84}{ m Kr}^{17+}$	305	276*
	124 Xe ²⁵⁺	420	371*

*Différence inhérente au détecteur PIPS "pulse height defect", liée notamment à un défaut de collection de charges pour les ions les plus lourds.

III. SEU MONITOR

Une vérification supplémentaire est réalisée à l'aide d'un SEU monitor fourni par l'ESA et servant de référence pour toutes les installations European Component Irradiation Facilities (ECIF). Celle-ci permet de vérifier la méthode de mesure dans son ensemble. Chaque ion du cocktail est mesuré à l'aide de ce composant de référence.

<u>Courbe des sections efficace</u> $\sigma_{(LET)}$

IV. Validation de la calibration

<u>Remarque</u>

La courbe des sections efficaces a été obtenue avec l'ancien SEU monitor fourni par l'ESA.

Directeur du CRC

9 septembre 2013

M Loiselet