

SINGLEEVENTEFFECTS TESTREPORT

TestType:	Heavylon
Testfacility:	RADEF/JYFL,FINLAND
TestDate:	October2009
PartType:	HM5225165BTT-75, HM5257805BTD-75
PartDescription:	256MbitSDR-SDRAM, 512MbitSDR-SDRAM
PartManufacturer:	ELPIDA
ESAreference	ESA_QEC1002S_C
Issue	03
Date	June17,2010

ESACOONo2underContractNo22327/09/NL/SFedated 15/10/09

TechnicalOfficer:FredrikSturesson

Hirexreference:	HRX/SEE/0276	Issue:03	Date:	June17,2010
Writtenby:	M.Mazurek	DesignEngineer	M	Mazu Rle
Authorizedby:	F.X.Guerre	StudyManager		fm

RESULTSSUMMARY

Facility RADEF, JYFL, Finland

Testdate

SELResults

October2009

Devicedescription

<u>Parttype</u> : <u>Description:</u> <u>Package</u> :	HM5225165BTT-75 256MbitSDR-SDRAM 54-pinTSOPII
Technology:	-
Diedimensions:	8011.66x14501.46µm
Deviceconstruction	1chip
Parttype :	HM5257805BTD-75
Description:	512MbitSDR-SDRAM
Package:	54-pinTSOPII
Technology:	
Diedimensions:	8011.66x14501.46µm
Deviceconstruction	2chipsbacktoback

Dieisthesameforthetwodevices

Forconvenience, LET values used in this plotaret

heonesattheDUTbacksidesurface

ForHM5257805BTD-75,onlyonediehasbeenheavyi

ontested.

NoSELwithXenonatnormalincidenceatambientte nineMeV/(mg/cm2),dependingonthinneddiefinal

At85°CSELcross-sectionwiththesameconditions ThereisnotmucheffectofDUTbiaseitherat+3.3 Tilting the device increases the number of SELs dra effectiverangedecreases with the tiltangle. This is linked with the averaged thicknesses of the incidenceatRADEF.

Lastly, it is worth to note that current step incre temperatures. These steps might belinked with SEFI capable of SEFI detection.

¹ http://www.srim.org/SRIM/SRIMLEGL.htm

Unicoleu.

mperature with a LET between sixty and sixty thickness (LET is computed with SRIM 2008

asabovewithXenonofabout1e-6cm2 Vor+3.6V.

stically, until it goes down to none as the ion

samples which were prepared only for normal

ases are observed even with Krypton at ambient soccurrenceshoweverthepresenttestwasnot

	CEE Test Depart	Ref. : HRX/SE Issue : 03	HRX/SEE/0276
Hirex Engineering	SEE Test Report	lssue :	03

DOCUMENTATIONCHANGENOTICE

Issue	Date	Page	Changeltem	
01	02/11/2009	All	Originalissue	
02	15/02/2010	All	IncludingESAcomments	
03	17/06/2010	All	IncludingfinalESAcomments	

Contributorstothiswork:

MariaMazurek François-XavierGuerre HirexEngineering HirexEngineering

SEETESTREPORT

TABLEOFCONTENTS

1 IN	NTRODUCTION	5
2 AI	APPLICABLEANDREFERENCEDOCUMENTS	5
2.1	APPLICABLE DOCUMENTS	5
3 DI	DEVICEINFORMATION	6
3.1 3.2 3.3 3.4	Devicedescription Sampleidentification Samplepreparation Thicknessofthesamples	
4 TI	TESTDEFINITION	9
4.1 4.2	TESTBOARD SDR-SDRAM TESTCONFIGURATION	
5 RA	RADEFTESTFACILITY	
6 SE	SEETESTRESULTS	
6.1	SEL	
7 DI	DETAILEDRESULTSPERRUN	14
7.1	Detailedruntable	
	LISTOFFIGURES	
Figure Figure Figure	re1:Deviceidentification e2:Thicknessofthedevices e3-%ofdieareaasafunctionofdiethick nesstogetherwithLETvaluesasa lepthatRADEF	functionofpene tration
Figure Figure Figure	e4:Heavylontestset-up e5–DUTsupplycurrentrecordshowingstepc urrentsinadditionoftwoSELs e6:RADEFOCT09,HM5257805&HM5225165B,SEL cross-section/devic e7:RADEF,768MeVKrypton	
Figure	e8:RADEF,1217MeVXenon	13

LISTOFTABLES

Table1:Usedionsandfeaturesthereof		11								
Table2:RADEF,OCT09,runtablefortheHM522516	5 &HM5257805dies	15								

1 Introduction

ThisreportpresentstheresultsofHeavyIonSELt estprogramcarriedoutonELPIDA256MbitSDR-SDRAMreferencedHM5225165BTT-75andonHM5225165BT T-75ELPIDA512MbitSDR-SDRAM referencedHM5257805BTD-75.

The devices were heavy ion tested at RADEF, Univers ity of Jyväskylä, Department of Physics, Jyväskylä, Finlandon 23th October 2009.

This work was performed for ESA under COO No2 under Contract No 22327/09/NL/SFe dated 15/10/09.

2 ApplicableandReferenceDocuments

2.1 **ApplicableDocuments**

- AD-1. HM5225165BDatasheetreferenceElpidaE0082H1
- 01 stedition 01 stedition AD-2. HM5257805BDatasheetreferenceElpidaE0081H1

AD-3. HirexproposalHRX/PRO/2739Issue02,datedJ une17,2009

ReferenceDocuments 2.2

RD-1. SingleEventEffectsTestmethodandGuidelin esESA/SCCbasicspecificationNo25100

3 DEVICEINFORMATION

3.1 Devicedescription

The HM5225165B is a 256-Mbit Simple Data RateSDRAMorganized as 4194304-word x16-bit x4bank. The HM5257805B is a 512-Mbit Simple Data RateSDRAMorganized as 16777216-word x8-bitx4bank. Allinputs and outputs are referred tother is ingedge of the clock input.

PartDescription:	256MbitSDR-SDRAM
Package:	54-pinTSOPII
SamplesUsed:	S/N524,S/N520
TopMarking :	5225165BTT75
Diedimensions:	8011.66x14501.46µm
PartDescription:	512MbitSDR-SDRAM
Package:	54-pinTSOPIIII
SamplesUsed:	S/N595
TopMarking :	5257805BRD75
Diedimensions:	8011.66x14501.46µm

HM5257805B is a stacked 2- die package. In fact, th 256Mbit (by 16) HM5225165B memory but wired as two §3.2herebelow. Fortestingpurposeonly1dieofHM5257805Bhasbe

3.2 Sampleidentification

Thetestwasperformedonthreesamples:twoHM5225 codestock"0329".

Photo1- TopMarking(HM5225165BTT-75)

Photo3- TopMarking(HM5257805BTD-75)

Photo2-DieMarking(HM5225165BTT-75)

Figure1:Deviceidentification

ese 2 dies are identical to the die used in the

512 Mbit (by 4). Die marking is shown in

enconsidered.

165BandoneHM5257805Bwithalotdate

SEE Test Report

3.3 Samplepreparation

The HM5225165B sample consists of one die. It is po with)thepenetrationdepthoftheion.

IncaseoftheHM5257805BTDsample,itiscomposed is then to remove completely one die and then to po fittedonseparatedDUTboards.

Once the samples are polished down the measurement purposetheCHRocodileITmeasuringsystemisused thesystemistreatedwiththesoftmadebyHirexE ngineering.

Figure3provides the% of die area as a function o valueasafunctionofpenetrationdepthisalsopl

Thisfigurehelpsforseeingtheeventualvariation %ofdieareaforthethreesamplesprepared.

lished down to a thickness corresponding (to

oftwoback-to-backdies.Samplepreparation lish the second one. After that, memories are

of their thickness is executed. For this withaccuracyof1µm.Thedataobtainedfrom

 $fdie thickness and on the same graph, the {\sf LET}$ otted.

²overa oftheLETvaluecomputedwithSRIM2008

3.4 Thicknessofthesamples

² http://www.srim.org/SRIM/SRIMLEGL.htm

XandYaxisunitsareinmm,Zaxisinµm.

Figure2:Thicknessofthedevices

Figure3-%ofdieareaasafunctionofdiethick penetrationdepthatRADEF

nesstogetherwithLETvaluesasafunctionof

4 Testdefinition

Testboard 4.1

Figure4showstheprincipleoftheHeavylontest	system.
Thedevices are clocked at 50 MHz with signal sgene has a dedicated + 3.3 Vanalogue supply with current the nominal memory supply current of 100 mA. The su	ratedbyaVirtex5FPGA(Xilinx).Eachmemory limitsetat200mA,whichisapproximatelytwice pplyvoltageofthememorycanreach+3.6V
TheXilinxFPGAispoweredfromaseparateexternal	benchsupply.
The test board includes the voltage/current monitor powersuppliesupto16independentchannels.	ing and the latch-up management of the DUT
AtemperatureControlsystemisusedtoheattheDU	T.Testsareexecutedatdifferenttemperatures.
The communication between the test chamber and the 100 Mbit/s Ethernet link which safely enables high	ne controllingcomputeriseffectivelydonebya speeddatatransfer.

ChamberWall Externalto Chamber InternaltoChamber Temperature Controlsystem ExternalPower Latch-up Supplies Management COMPUTER LAN VIRTEX5 I/O DUT GraphicalUser Interface DRIVER Interface **FPGA** Interfaceboard BEAMCOUNTER

Figure4:Heavylontestset-up

4.2 SDR-SDRAMTestconfiguration

Thesystemprovidesthefollowingfeatures:

- 8and16bitsdatawidth.
- From256Mbitto512Mbit
- Upto4Banks. _
- Burstlengthof1. _
- CASlatencyof2. _
- DUTClockfrequencyat50MHz. _
- Staticanddynamictestconditions.
- ProgrammableAuto-Refresh(defaultvalue8192refr eshcycles/49ms).
- AutomaticInitializationoftheDUTafterpower-on
- "Manual"InitializationoftheDUTsupportedatan
- Fastandpowerfultestsequencegeneration.

Thememoryistestedinastaticmodeandthetest Thetimeframeofoneiterationcycleisapproximat for reading the memory plus the time to write to th case of errors detection, this cycle time can incre senttothememory. Thememory is continuously expo aswellaslatch-uprecovery.

ytime.

sequenceconsistsinsuccessiveiterationcycles. elytwelveseconds.Thatcorrespondstothetime e entire memory and the auto refresh cycles. In ase. During each cycle autorefresh command is sedtothebeamallalongthetestsequence.

SEL detection is performed by monitoring the DUT su pply current. The SEL threshold can be adjustedduringthetest, butingeneraladjustedb eforestartingthetest.

The run test sequence is manually defined from the choice of static or dynamic test, auto refresh peri banks, SELthreshold, DUT supply voltage etc...

Graphical User Interface (GUI) providing the od, exposition time, device configuration, selected

Testconditions

In the first test runs the value of the nominal DUT increased to+3.6V.DetectionSEL threshold isset The tests are done at three different temperatures, °C.

supply voltage is +3.3V. In later test runs it is attwicethenominal current value. room temperature (35°C), about 45°C and 85

5 RADEFTestFacility

Test at the cyclotron accelerator was performed at HIREXEngineeringresponsibility.

The facility includes a special beam line dedicate components and devices. It consists of a vacuum cha apparatus and the necessary diagnostic equipment re analysis.

The cyclotron is a versatile, sector-focused accele with three external ion sources: two electron cyclo high-charge-state heavy ions, and a multicuspions areespeciallyvaluableinthestudyofsingleeven ions,themaximumenergyattainablecanbedetermin University of Jyvaskyla (JYFL) (Finland) under

d to irradiation studies of semiconductor mber including component movement guired for the beam guality and intensity

rator of beams from hydrogen to xenon equipped tron resonance (ECR) ion sources designed for ourceforintensebeams of protons. The ECR's teffects(SEE)insemiconductordevices.Forheavy edusingtheformula

$130Q^{2}/M$,

whereQistheionchargestateandMisthemassi

Testchamber

Irradiationofcomponentsisperformedinavacuum heightof81cm.

The vacuum in the chamber is a chieved after 15 minu few minutes. The position of the components install chambercanbeadjustedintheX,YandZdirection providedbyaroundtable.Thefreemovementarear whichallowsonetoperformseveralconsecutiveirr breakingthevacuum.

The assembly is equipped with a standard mounting f thespecialboardconfigurationsandthevacuumfee workshops. The chamber has an entrance door, which individualcomponents.

ACCDcamerawithamagnifyingtelescopeislocated accurate positioning of the components. The coordin allowingfastpositioningofvarioustargetsduring thetest.

Beamqualitycontrol

For measuring beam uniformity at low intensity, a C readoutisfixed in the mounting fixture. The unifo irradiationandtheresultscanbeplottedimmediat AsetoffourcollimatedPIN-CsI(TI)detectorsisI are operated with step motors and are located at 90 irradiation and uniformity scan they are set to the stabilityofthehomogeneityandflux.

Two beam wobblers and/or a 0.5 microns diffusion Go homogeneity. The foil is placed 3 m in front of the horizontallyandvertically,thepropersweepingar Dosimetry

The flux and intensity dosimeter system contains a counter and four PIN-CsI(TI) detectors. Three colli cm in front of the device under test. They can be u studied.

Atlowfluxesaplasticscintillatorwithaphotomu islocatedbehindthevacuumchamberandisusedbe ofthefourPIN-CsI(TI)detectors.

Usedions

TheRADEFionsusedarelistedinthetablebelow.

lon	Energy (MeV)	LET (MeV.cm²/mg)	Range(Si) (μm)
131Xe35+	1217	32.10	94
83Kr22+	768	60	89

Table1:Usedionsandfeaturesthereof

chamberwithaninsidediameterof75cmanda

nAtomicMassUnits.

tes of pumping, and the inflation takes only a ed in the linear movement apparatus inside the s.ThepossibilityofrotationaroundtheY-axisis eservedforthecomponentsis25cmx25cm, adiationsforseveraldifferentcomponentswithout

ixture. The adapters required accommodating d-throughscanalsobemadeinthelaboratory's allowsrapidchangingofthecircuitboardor

attheotherendofthebeamlinetodetermine ates are stored in the computer's memory

sI(TI) scintillator with a PIN-type photodiode rmityismeasured automatically before component elyformoredetailedanalysis.

ocatedinfrontofthebeamentrance.Thedetectors degrees with respect to each other. During the outer edge of the beam in order to monitor the

Id foil can be used to achieve good beam chamber. The wobbler-coils vibrate the beam eabeing attained with the adjustable coil-currents

Faraday cup, several collimators, a scintillation mators of different size and shape are placed 25 sed to limit the beam to the active area to be

Itipliertubeisusedasanabsoluteparticlecount er.lt foretheirradiationtonormalizethecountrates

6 SEETestResults

Tested devices were not functional when checked bef number of errors were detected although DUT powerc to apply to the device the static test as described countingandrecordingtheDUTcellerrors).Asno Each time a SEL event occurs, the current iteration poweroffperiodandmemorytestisreinitializedf

The effective fluence for SEL corresponds to the to during which the device is powered off after each S corresponds to the number of SELs multiplied by one programmedforpowerofftimeafterSEL).

DetailedresultsperrunareprovidedintheTable

6.1

SEL

Forthethreesamplestested, noSELwasobserveda correspondstoaLETvalueabovesixtyonmorethan (seeFigure3).

Atabout45°Candwithatiltof45degfewSELsw section/dieof3e-07cm2.Thereisnotmuchdiff

At85°CSELswereobservedatnormalincidencewith 1e-06cm2/die.BytiltingthedevicetheSELcro effectiverangeisnomorecompatiblewithdiethic ThiscanbeobservedinFigure6whereS/N524anda sectionvaluewhichmightbeexplainedbytheDUTI withatiltangleof60deg.shownomoreSELasio

Toillustratetheseresults,LETplotsversusionr energiesinSilicontargethavebeenproducedthank featuresofthetransportofionsinmatter.Figure Xenonwithnominalenergyvalueof768MeVforKryp value0ofRangecorrespondstothestartofthesi angleshavebeenconsidered. Figure8 showsthatwith60deg.theverticalrangeintoth below-45umwhichislessthanthethicknessofal noSELcanbeachievedwith60deg.tilting.

ore test exposure in the sense that a high onsumption was normal. It was then decided in §4.2 but with inactive SEU detection (without erroriscounted,SEFIdetectionisalsoinactive. cycle is aborted. SEL is processed including a ollowedbythenextiteration.

tal run fluence, minus the overall time duration EL event. In this experiment, this overall time second (one second is the duration

2oftheparagraph8.

tambientwithXenonatnormalincidence.It 80% of diearea for S/N524 and S/N595 die

ereobservedwithacorrespondingSELcrosserencebetween+3.3Vand+3.6Vbiasconditions.

acorrespondingSELcross-sectionofabout sssectionincreaseddrasticallyuntiltheion kness

tiltof53deg.showadecreaseinSELcrossowersupplyvoltage.Howevertestingthedevice nsareverylikelystoppedbeforesensitivevolume.

angefortwodifferentionsandattwodifferent stoSRIM2008program ³.ltcomputesdifferent 7and Figure8 havebeenplottedforKryptonand tonand1217MeVforXenon, respectively. The liconsurface(backside)ForXenon,severaltilt edeviceis IthediesasvisualizedinFigure2.Consequently

vedduringtherunsevenwithKryptonat

LastlysomeDUTbiascurrentsstepshavebeenobser ambientandnormalincidence.Itispossiblethatt (seeFigure5).

hesestepsmightcorrespondtoSEFloccurrences

Figure5–DUTsupplycurrentrecordshowingstepc

urrentsinadditionoftwoSELs

³ http://www.srim.org/SRIM/SRIMLEGL.htm

SEE Test Report

LETvaluesusedaretheoneattheDUTbacksidesur face

face

Figure7:RADEF,768MeVKrypton(LETiscomputedw

ithSRIM2008⁴)

Figure8:RADEF,1217MeVXenon(LETiscomputedwi thSRIM2008)

⁴ <u>http://www.srim.org/SRIM/SRIMLEGL.htm</u>

7 <u>Detailedresultsperrun</u>

Hirextestrunnumber
Typeofsample
Hirexsamplenumber
DUTsupplyvoltage1(V)
DUTtemperature(°C)
Ionspecie
Ionincidentenergy(MeV)
LinearEnergyTransfer(MeV/(mg/cm ²))
DUTtiltanglewithbeamdirection(deg)
LET/(cos(tiltangle)(MeV/(mg/cm ²))
IonrangeinSilicon(microns)
Cumulatednumberofionsoverthetestru n(cm ⁻²)
Timewithbeam(s)
EffectiveFluence(cm ⁻² xs ⁻¹)
NumberofSELs
SELerrorcross-sectionperdevice (cm ²)

SEE Test Report Hirex Engineering

Ref. : HRX/SEE/0276

lssue :

Detailedruntable 7.1

Comment					urrent steps																						
SEL cross- section / die					0							3,00E-07					9,40E-06	1,00E-06		1,00E-06	1,50E-05	3,00E-06	2,46E-06	4,90E-07	2,36E-05	2,96E-06	
SEL	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	47	5	0	2	15	9	5	1	25	9	0
Flux	4,51E+03	4,49E+03	1,64E+03	3,18E+03	3,66E+03	2,87E+03	5,53E+03	5,35E+03	3,13E+03	3,69E+03	2,92E+04	2,92E+04	2,92E+04	4,46E+03	3,60E+03	4,18E+03	9,67E+03	3,01E+04	4,76E+03	3,48E+03	2,40E+03	3,54E+03	5,92E+03	4,85E+03	3,09E+03	5,92E+03	6,59E+03
Total time (sec.)	443	445	1219	628	547	696	479	198	638	542	343	343	343	448	556	479	517	166	420	575	416	565	343	421	343	343	343
Fluence	2,00E+06	2,00E+06	2,00E+06	2,00E+06	2,00E+06	2,00E+06	2,65E+06	1,06E+06	2,00E+06	2,00E+06	1,00E+07	1,00E+07	1,00E+07	2,00E+06	2,00E+06	2,00E+06	5,00E+06	5,00E+06	2,00E+06	2,00E+06	1,00E+06	2,00E+06	2,03E+06	2,04E+06	1,06E+06	2,03E+06	2,26E+06
Range at DUT back surface	94	94	94	89	94	89	89	89	89	89	89	89	89	94	89	94	89	89	94	89	89	89	89	89	89	89	89
LET eff at DUT back surface	32,10	32,10	32,10	60,00	32,10	60,00	60,00	60,00	60,00	60,00	84,85	84,85	60,00	32,10	60,00	32,10	99,70	60,00	32,10	60,00	84,85	69,28	69,28	60,00	84,85	69,28	120,00
TILT	。 0	。 0	。 0	。 0	。 0	。 0	。 0	。 0	。 0	。 0	45 °	45 °	。 0	。 0	。 0	。 0	53 °	。 0	。 0	。 0	45 °	30 °	30 °	。 0	45 °	30 °	。09
LET	32,1	32,1	32,1	60	32,1	60	60	60	60	60	60	60	60	32,1	60	32,1	60	60	32,1	60	60	60	60	60	60	60	60
NOI	82Kr24	82Kr24	82Kr22	131Xe+35	82Kr22	131Xe+35	82Kr24	131Xe+35	82Kr23	131Xe+35	131Xe+35	82Kr24	131Xe+35														
DUT Temp.	25 °C	45 °C	85 °C																								
DUT bias voltage	3,6 V	3,6 V	3,3 V	3,3 V	3,6 V	3,6 V	3,3 V	3,6 V	3,3 V	3,6 V	3,3 V	3,3 V	3,3 V	3,6 V	3,6 V	3,3 V	3,3 V	3,3 V	3,6 V	3,6 V	3,6 V	3,6 V	3,3 V	3,6 V	3,6 V	3,6 V	3,6 V
Auto refresh period ms	49 ms																										
Test cond.	Auto-refresh																										
S/N #	520	520	524	524	524	524	595	595	520	520	595	595	595	520	520	524	524	524	524	524	524	524	595	595	595	595	595
HRX RUN	24	25	19	33	20	34	52	53	29	30	59	60	61	26	31	22	38	39	23	35	36	37	57	54	55	56	58
Part type	HM5225165B	HM5225165B	HM5225165B	HM5225165B	HM5225165B	HM5225165B	HM5257805B	HM5257805B	HM5225165B	HM5225165B	HM5257805B	HM5257805B	HM5257805B	HM5225165B	HM5257805B	HM5257805B	HM5257805B	HM5257805B	HM5257805B								

&HM5257805dies Table2:RADEF,OCT09,runtablefortheHM5225165