

SINGLEEVENTEFFECTS TESTREPORT

PartType:	A3PE3000L
PartDescription:	ProASIC3LFlashBasedFPGA
PartManufacturer:	ACTEL
TestFacility	RADEF, Jyväskylä, Finland
TestDate	June2010&November2010
TestFacility	PIF,PSI,Villigen,Switzerland
TestDate	March2011
Issue	03
Date	August23rd,2011

ESAESTECContractNo22327/09/NL/SFE

ESAESTECTechnicalOfficer:ChristianPoivey

Hirexreference:	HRX/SEE/0303	Issue:03	Date: August23 rd ,2011
Writtenby:	MichaelGrandjean	DesignEngineer	A A A A A A A A A A A A A A A A A A A
Authorizedby:	F.X.Guerre	StudyManager	fm

DOCUMENTATIONCHANGENOTICE

Issue	Date	Page	Changeltem	
01	01/10/2010	All	Draftissue	
02	11/05/2011	All	AddedRADEFNovember2010andPSIMarch2011	
03	23/08/2011	63	ModifiedtheSRAMheavyioncross-sectionplotand	
		68	Addedsamplesstatusaftertheheavyionandthe samplesstatusafteralltestsinthe CONFIGURATION FLASH,CHARGEPUMP&INSYSTEMPROGRAMMING paragraph	
		89	ModifiedtheSRAMconditionsandSEUtables	

Contributorstothiswork:

MichaelGrandjean François-XavierGuerre

ChristianPoivey

HirexEngineering HirexEngineering

ESAESTEC

RESULTSUMMARY

from ACTEL manufacturer was SEE characterized TheA3PE3000LflashFPGAfromtheProASIC3Lfamily atthefollowingfacilitiesunderESAESTECcontrac tnumber22327/09/NL/SFE:

- ✓ RADEF, University of Jyväskylä, Jyväskylä, Finland inJuneandNovember2010.
- ✓ PIF,PSI,Villigen,SwitzerlandinMarch2011.

SEE mitigation methods applied on the same die were also characterized and their SEE sensitivities evaluated. 2 test vehicles (TV) were designed and t ested. The first TV implemented 14 shift registers, one clock conditioning circuit with phase-locked loop a nd 100 % of the SRAM and UFROM memories. The second TV implemented SEU and SET mitigation on 6s hift registers. All shift registers of both TVs wer е madeof1024registersmadeofDcoreflip-flopwit hclearandenableactivehigh.

Devicedescription:

Parttype:	A3PE3000L
Partfamily	ProASIC3L
Manufacturer:	ACTEL
Package:	PQ208
Datecode:	0922
Usedsamples:	SerializedfromSN1toSN24.
Packagemarking:	QHR8G
Diedimensions:	10.8x10.8mm

SEL:

NoSELwasobserveduptoaLETof55MeV.cm²/mg,a to125°Celsiusandabiasvoltageof1.65Voltsfo

cumulatedfluenceof1E7p/cm², at emperature up rthecorevoltageand3.6Voltsfortheinput/outp utvoltage.

SEFI:

One SEFI was detected and recorded during the campa withaneffectiveLETof55MeV.cm²/mg.Thedevice tested with a working frequency of 2MHz. From the endoftherun(afluenceof5E5p/cm²)alltherea devicedidnotrecoverfromtheSEFIstatebyitsel allowingthenextrunwiththeexactsamecondition

SEU:

Theflash(configurationanduser)wasnotseensen intact. However the programming part of the flash w dosedepositedbythecumulatedfluence.

Concerningtheshiftregisters:

- ✓ The reference and standard shift register (TV1 S asymptotic cross-section below 3E-7 cm² per bit and extremely light influence of the working frequency errors are SBUs where almost 2/3 is due to clear tr numbersofconsecutiveresetbits(clearbit)were on the Figure 1 was estimated from the measured poi perbitforcomparisonpurpose.
- The channel implementing combinational cells on th SEUcross-sectionalareaperbitsimilartotheref the SEU cross-section or so lightly than it is not SBUswithmorethanhalfduetocleartransition.M thanthereferencechannel. Howeveranothersignatu on the enable signal caught at the active edge of t SETsontheenablesignalwerecaughtthatway.
- Thechannelimplementingcombinationalcellsonth \checkmark

ignatRADEFonNovember2010ontheRUN112 wasconfigured with the TV2 and all shift registers were Iteration N°257 (afluence of 3.69E5p/cm²) up to the "0").The ddatafromthedevicewerereadatthelowstate(hedevice f.Therecoverytookplaceafterapowercycleoft stobeperformedwithoutanymoreSEFIdetected.

sitivetoSEEuptoaLETof55MeV.cm²/mg.ltrema ined as stated sensitive to SEU, SHE and to the cumulate d

> R1) SEU cross-section is characterized with an a LET threshold below 1.8 MeV.cm²/mg. An can be seen on the SEU cross-section. Most ansition. Some MBUs largely made of arbitrary countedaswell.AreferenceWeibullcurveplotted ntsandaddedtoallSEUcross-sectionalarea

e enable signal path (TV1 - SR2) results in an erence.Thefrequencydoesnotappeartoinfluence visible on the cross-section curve. Most errors are BUsaremadeoferrorswiththesamesignatures reshowsun-shiftedquartetscausedbyanSET he clock: data are held from shifting. Very few

eresetsignalpath(TV1-SR3)resultsinaSEU

cross-sectional area per bit characterized with an a LET threshold around 1.8 MeV.cm²/mg. This SEU cross Almost 80% of SEUs are SBUs and 70% of those aredu MBU compared to the reference channel and almost al reset bits.

- The channel implementing combinational cells in-be SEU cross-sectional area per bit similar to the ref frequencycanbeseenontheSEUcross-section.Mos cleartransition.ComparingSEUcross-sectionande tothereferenceone.
- The channels implementing the DDRI/O registers (T LVDS buffers (TV1 SR9 and 10) show a SEU cross-se reference. SEE signatures are also like therefore ceso
- The channels clocked by the PLL output clock (TV1 per bit identical to the reference. Most SEUs are S MBUs are largely attended to reset bits and flipped channels that could lead to a total or partial stop
- ✓ The channel implementing sequential cell triplicat area per bit characterized with an asymptotic cross difference(around2decades)onitsSEUcross-sect statisticattendedtothesmallnumberoferrors.M are due to clear transition. The high percentage of channel is made of arbitrary numbers of reset bits. decreasesthetotalamountofSEUandchangestheS only asynchronous global (or local) reset signal sh SEUwithoutanyavailablecorrectionfromthevoter
- ✓ Thechannelimplementingsequentialcelltriplicat iona cross-sectional area per bit characterized with an a LET threshold below 10 MeV.cm²/mg, lower than the r implementing only sequential cell triplication. Thi s r channels implementing only the sequential cell trip thesamesequentialcelltriplicationasSEUmitiga tio cross-section was expected on the SR2 channel. Noe resultonthischannel.
- The channel implementing the SET filtering method cross-sectional area per bit similar to the referen referencechannel.
- ✓ The channel implementing sequential cell triplicat delayof3ns(TV2-SR4)didnotshowanyeventup fluenceof2E6p/cm².
- Thechannelimplementingsequentialcelltriplicat SR5)didnotshowanyeventuptoaLETof55MeV.c
- ✓ The channel made of full TMR mitigation (TV2 SR6 cleared). Based on an extremely poor statistic this implementingonlysequentialcelltriplication(TV2 -
- ✓ All the channels of the TV1, expected the channels proton. They all have the same proton SEU cross-sec (with a low number of errors) below 1E-13 cm² at 23 cross-sectionisplotted on the Figure 2.

The SRAM heavy ion SEU cross-sectional area per bit around4E-8cm²perbitandaLETthresholdbelow1 area per bit is characterized with an asymptotic cr below23.5MeV.AllSEEsareupsetswithaverylar set/cleartransitionsandonRAMblockposition.

ThePLLoutputclockneverstopped.HoweverthePLL SET.Itcanbeseenthanthefrequencyinfluencest mode to a nominal frequency of 200 MHz, increasing working frequency increased those sensitivities. In recordedonthePLLlocksignalwhileitsSETcross small number of errors is characterized with an asy thresholdaround1.8MeV.cm²/mg. asymptotic cross-section below 1E-6 cm² and a -sectionperbitishigherthanthereference. etocleartransition. There is a high count of al lof those are due to arbitrary numbers of

tween each register (TV1 - SR4) results in an erence. A very light influence of the working tSEUsareSBUsand2/3ofthosearedueto rrorsignatures, this channel seems very similar

V1-SR5to8) and the channels implementing s-se ctional area per bit very similar to the cesones.

-SR11to14)haveaSEUcross-sectionalarea BUs with more than half due to clear transition. bits:itwasnotseenatotalfliporstuckbitof the ofthePLLoutputclock.

ion (TV2-SR1) results in a SEU cross-sectional s -section below 2E-9 cm². There is a large ionandthereferenceone. Itisbasedonapoor orethan70% of SEUs are SBUs and all of those MBU (almost 30%) compared to the reference The sequential cell triplication SEU mitigation BUvs. MBU ratio. All events appearing on the ared between all registers induced all recorded

ionandl/Obanktriplication(TV2-SR2)hasaSEU asymptotic cross-section below 2E-7 cm² and a he r eference but still higher than the channel s result seems unrealistic compared to the other lication (TV2 SR1). Because both channels use tion, asmaller (orintheworstcaseanequivalent e xplanation has been found yet to explain the

)

with a delay of 2 ns (TV2 - SR3) has a SEU ce. Its SEEs signatures are also very like the

ion, I/O block triplication and SET filtering with to a LET of 55 MeV.cm²/mg and a cumulated

ion,I/Oblocktriplicationandlogicduplication(TV2m²/mgandacumulatedfluenceof2E6p/cm².
) was the source of only 2 SBUs (single bit channel look close to the result of the channel -SR1).

clockedwiththePLLoutputclockweretestedto tion per bit measured from a low sensitivity 0 MeV. The reference channel proton SEU

t is characterized with an asymptotic cross-section .8MeV.cm²/mg.TheSRAMprotonSEUcross-sectional oss-section below 1E-13 cm² and an energy threshold gemajorityofSBUsverywellbalancedonbitposit ion,on

locksignalissensitivetoPLLlocksignalSEFIa ndto hosesensitivities.Because the PLL was set on ast the gap between the nominal frequency and the nominal condition no any PLL lock signal SEFI was -sectional area based on a poor statistic attended to the mptotic cross-section below 1E-5 cm² and a LET

Figure1:TV1-ReferenceSR-Heavyion-SEUcros s-sectionalareaperbit

ectionalareaperbit

A3PE3000LSEETESTREPORT TABLEOFCONTENTS

1	INTI	RODUCTION	11
2	APP	LICABLEANDREFERENCEDOCUMENTS	11
	2.1	APPLICABLE DOCUMENTS	11
	2.2	REFERENCE DOCUMENTS	11
3	DEV	ICEINFORMATION	12
	3.1	DEVICEDESCRIPTION	
	3.2	DEVICE PROCUREMENT	12
	3.3	DEVICEIDENTIFICATION	
	3.4	SAMPLESIDENTIFICATION	
4	RAD	DEFTESTFACILITY	14
	4.1	BEAMQUALITYCONTROL	14
	4.2	DOSIMETRY	14
_	4.3	USEDIONS	14
5	PIFI	IESTFACILITY	15
6	STA	TEMENTOFWORK-REQUIREMENTS	16
	6.1	TEST VEHICLE DESIGN REQUIREMENTS	16
7	TES	TVEHICLEDESIGNS	
	7.1	TV1 - SHIFT REGISTERS	
	7.2	TV2 - SHIFT REGISTERS	21
	7.3	SRAM	24
	7.4		
	7.5	CLOCK CONDITIONING CIRCUIT / PHASE-LOOKED LOOP	
8	7.0 TFS'	TV RESOURCES USAGE	24
0	0.1		
	8.1 8.2	POWERSUPPLY	27 28
	8.3	SRAM	
	8.4	UFROM	
	8.5	CCC/PLL	
	8.6	CONFIGURATION FLASH, CHARGEPUMPAND ISP	
9	HEA	VYION-TESTRESULTS	32
	9.1	POWER SUPPLY	
	9.2	TV1 - SHIFT REGISTER	44
	9.2.1	TV1-SR1	
	9.2.2	TV1-SR2	
	9.2.3	TV1-SR3	
	9.2.5	TV1-SR5.6.7and8	
	9.2.6	TV1-SR9and10	
	9.2.7	TV1-SR11,12,13and14	
	9.3	TV2 - SHIFT REGISTER	57
	9.3.1	TV2-SR1	
	9.3.2	TV2-SK2	
	9.3.3 Q 2 1	1 v 2-3x3 TV2-SR4	60 61
	9.3.4	TV2-SR5	
	9.3.6	TV2-SR6	
	9.4	SRAM	63

9.5	UFROM	66
9.6	CCC/PLL	66
9.7	CONFIGURATION FLASH, CHARGE PUMP & IN SYSTEM PROGRAMMING	68
10	PROTON-TESTRESULTS	70
10.1	POWER SUPPLY	70
10.2	TV1 - SHIFT REGISTER	70
10	D.2.1 TV1-SR1	
10	0.2.2 TV1-SR2	
10	0.2.3 TV1-SR3	71
10	0.2.4 TV1-SR4	
10	0.2.5 TV1-SR5,6,7and8	
10	0.2.6 TV1-SR9and10	
10	D.2.7 TV1-SR11,12,13and14	
10.3	TV2 - SHIFT REGISTER	
10.4	SKAM	
10.5		
10.0	CONFICUE ATION ELAST CHADGE DUMD & IN SYSTEM DDOGD AMMING	
10.7	CONFIGURATION FLASH, CHARGE FUMF & IN STSTEM FROORAMMINO	
11	CONCLUSION	80
12	RADEF-JUNE2010-RUNTABLES	83
12.1	RUN / BEAM / DUT / SEL - TABLES	
12.2	SHIFT REGISTER CONDITIONS AND SEU - TABLES	85
12.3	SHIFT REGISTER CROSS-SECTION PER BIT - TABLE	
12.4	SRAM CONDITIONS AND SEU - TABLES	89
12.5	UFROM / PLL - TABLES	91
12.6	CONFIGURATION - TABLE	93
13	RADEF-NOVEMBER2010-RUNTABLES	94
13.1	RUN / BEAM / DUT / SEL / SEFI - TABLES	
13.2	SHIFT REGISTER CONDITIONS AND SEU - TABLES	
13.3	SHIFT REGISTER CROSS-SECTION PER BIT - TABLE	96
13.4	CONFIGURATION - TABLE	97
14	PIF-MARCH2011-RUNTABLES	
14.1	RUN / BEAM / DUT / SEL - TABLES	
14.2	SHIFT REGISTER CONDITIONS AND SEU - TABLES	
14.3	SHIFT REGISTER CROSS-SECTION PER BIT - TABLES	100
14.4	SRAM / UFROM - TABLES	101
15	ACRONYMSANDABBREVIATIONS	

LISTOFFIGURES

Figure1:TV1-ReferenceSR-Heavyion-SEUcros	s-sectionalareaperbit	. 5
Figure2:TV1-ReferenceSR-Proton-SEUcross-s	ectionalareaperbit	. 5
Figure3:Deviceidentification	· · · · · · · · · · · · · · · · · · ·	13
Figure4:Proscanfacility	,	15
Figure5:Calibrationresults-inputenergy230Me Vr	proton	15
Figure6:Basicshiftregisterblock	· · · · · · · · · · · · · · · · · · ·	16
Figure7:TV1-SR1-Schematic		19
Figure8:TV1-SR2-Schematic		19
Figure9:TV1-SR3-Schematic		20
Figure10:TV1-SR4-Schematic		20
Figure 11: TV1-SR5.6.7 and 8-Schematic		21
Figure 12: TV2-SR1-Schematic		 22
Figure 13: TV2-SR2-Schematic		22
Figure 14:TV2-SR3-Schematic		 22
Figure 15: TV2-SR4-Schematic		23
Figure 16:TV2-SR5-Schematic		-0 23
Figure 17:TV2-SR6-Schematic		-0 23
Figure 18: Heavy lontestset-up		25
Figure 19:DI ITboardset		26
Figure 20:SRAMFillalgorithm		20 20
Figure 21:SRAMCheckalgorithm		20 20
Figure 22:1 JEROMC beckalgorithm		20 20
Figure 23: RADEF lune 2010-RUN 150-Bank 1 nower	supply	22 20
Figure 24: RADEF June 2010 - RUN 159-Bank 2power	supply	37 27
Figure 25: RADEF June 2010-RUN 159-Bank 2power	supply	25 25
Figure 26: RADEF June 2010-RUN 159-Bank Opower	supply	38 20
Figure 27: PADEF June 2010-PUIN159-Dank4power	supply	30 27
Figure 28: DADEF June 2010 PUN159 Bank Spower	supply	21 20
Figure 20: DADEF June 2010 PUN159-Dankopower		20 20
Figure 20: DADEF June 2010 PUN159 - Dank / power	supply	29 79
Figure 24, DADEF June 2010 RUN 159-Dalikopowel		40 44
Figure 31: RADEFJune 2010-RUN 159-PLLCpower	supply	41 40
Figure 22: RADEFJune 2010 RUN 159-PLLFPOWER	supply	+∠ ₄⊃
Figure 33: RADEFJune 2010-RUN 159-Corepowers	ирріу	43
Figure 34:1 VI-SRI-SEUcross-sectional areaper	Dit	44 15
Figure 35: TV T-SR T-SEUcross-sectionalareaper	bitvs.irequency	40
	4 4	40
Figure 37:1 V1-SR2-SEUcross-sectional areaper	DIT	47
Figure 38: IV1-SR2-SEUCross-sectional areaper	bitvs.frequency	47
Figure 39: I V1-SR2-SEUdistribution	4 4	48
Figure40: IV1-SR3-SEUcross-sectionalareaper	DIT	49 50
Figure41: I V1-SR3-SEUdistribution		50
Figure42: I V1-SR4-SEUcross-sectionalareaper		51 54
Figure43: IV1-SR4-SEUcross-sectionalareaper	bitvs.frequency	51 - 2
Figure44: I V1-SR4-SEUdistribution		52 52
Figure45: IV1-SR5,6, /and8-SEUcross-sectio	nalareaperbit	53
Figure46: IV1-SR5,6, /and8-SEUdistribution		53
Figure47:TV1-SR9and10-SEUcross-sectionala	reaperbit	54
Figure48:TV1-SR9and10-SEUdistribution		55
Figure49:TV1-SR11,12,13and14-SEUcross-se	ctionalareaperbit	56
Figure50:TV1-SR11,12,13and14-SEUdistribu	tion	56
Figure51:TV2-SR1-SEUcross-sectionalareaper	bit	57
Figure52:TV2-SR1-SEUdistribution		58
Figure53:TV2-SR2-SEUcross-sectionalareaper	bit	59
Figure54:TV2-SR2-SEUdistribution		59
Figure55:TV2-SR3-SEUcross-sectionalareaper	bit	60
Figure56:TV2-SR3-SEUdistribution		61
Figure57:TV2-SR6-Heavyion-SEUcross-sectio	nalareaperbit	62
Figure58:SRAM-SEUcross-sectionalareaperbit.		63

Figure 59: SRAM-Errortype distribution Figure60:SRAM-SBUvs.MBUdistribution Figure61:SRAM-SEUvs.Bitpositiondistribution Figure62:SRAM-SEU-Set/Cleardistribution ... Figure63:SRAM-SEUvs.Blockpositiondistributi Figure64:PLLLocksignal-SETcross-sectionalar Figure65:TV1-SR1-SEUcross-sectionalareaper Figure66:TV1-SR2-SEUcross-sectionalareaper Figure67:TV1-SR3-SEUcross-sectionalareaper Figure68:TV1-SR4-SEUcross-sectionalareaper Figure69:TV1-SR5,6,7and8-SEUcross-sectio Figure70:TV1-SR9and10-SEUcross-sectionala Figure71:SRAM-SEUcross-sectionalareaperbit. Figure72:SRAM-Errortypedistribution Figure73:SRAM-SBUvs.MBUdistribution Figure74:SRAM-SEUvs.Bitpositiondistribution Figure75:SRAM-SEU-Set/Cleardistribution ... Figure76:SRAM-SEUvs.Blockpositiondistributi

on	66
ea	67
bit	70
bit	71
bit	72
bit	73
nalareaperbit	74
reaperbit	75
	76
	76
	77
	78
On	
~	

LISTOFTABLES

Table1:Devicedescription	12
Table2:Sampleidentification	13
Table3:RADEF,usedionsandfeatures	14
Table4:TV1-shiftregisterscharacteristics	17
Table5:TV1-ShiftRegisterspecifications	18
Table6:TV2-ShiftRegisterspecifications	21
Table7:TVs-Resourcesusage	24
Table8:Powersuppliesconditions	27
Table9:Powersupplies-Currentthresholds	27
Table10:SRAM-Errortypesdefinitions	28
Table11:UFROM-Errortypesdefinitions	30
Table12:TV1-SR1- λparametervalues	45
Table13:CCC/PLL-PLLlocksignalSEFIconditions	66
Table14:Samplesstatus	69

1 Introduction

ACTELProASIC3flashFPGAfamilyofferstheunique a high density programmable logic product. At the s covered the 1 Million gates capacity requirements f RD-2 results were promising. For those reasons, the applications. Combination of the project, the family was the only one that at orspace applications. Preliminary radiation test R D-1 and ProASIC3 family was very attractive for space applications.

The objective of this study is to fully characteriz performingheavyions, protonand totalionization dosetests. e the radiation sensitivity of the ProASIC3 FPGA, b y dosetests.

This report presents the results of Single Event Ef fect characterization program carried out on the de vice referred A3PE3000L from the ACTEL ProASIC3L Flash B ased FPGA family. The Single Event Effects were characterized using:

- ✓ Heavy ions accelerator at RADEF, University of Jyv äskylä, Department of Physics, Jyväskylä, FinlandinJune2010andNovember2010.
- ✓ ProtonacceleratoratPIF, PaulScherrerInstitut (PSI), Villigen, SwitzerlandinMarch2011.

ThisworkwasperformedforESAESTECunderthecon tractnumber22327/09/NL/SFE.

2 ApplicableandReferenceDocuments

2.1 ApplicableDocuments

- AD-1 Statement Of Work, Radiation Testing of Candid ate Microelectronics Parts for Space Applications-FrameContract, ReferenceTEC-QCA/CP /SOW/2008-1Issue:1, RevisionC, 26.06.2008
- AD-2 Statement Of Work, Radiation Testing of Candid ate Microelectronics Parts for Space Applications - Call-Off Order 1, Reference TEC-QCA/ CP/SOW/2008-2-COO1 Issue: 1, RevisionC,26.06.2008
- AD-3 Hirex Engineering Proposal, Radiation Characte rization of ACTEL ProASIC3L family, referenceHRX/PRO/2427,Issue1,September15 th,2009
- AD-4 ProASIC3LlowpowerflashFPGAsDatasheetv1.3 ,February2009
- AD-5 HirexEngineeringA3PE3000Ldesignreportrefe rredHRX/SEE/0286

2.2 ReferenceDocuments

- RD-1. S.Rezgui&al., "NewReprogrammableandNon- VolatileRadiationTolerantFPGA:RTA3P," presentedatRADECS2007,Deauville,France,Septem ber2007
- RD-2. S.Rezgui&al., "NewMethodologiesforSETC haracterizationandMitigationinFlash-Based FPGAs,"IEEETrans.Nuc.Sci.,vol,54,n°6,pp.25 12-2524,Dec.2007
- RD-3. ECSSQ60-02, "SpaceProductAssurance, ASIC and FPGA development," July 2007
- RD-4. ProtonIrradiationFacilityatthePROSCANpr ojectofthePaulScherrerInstitutePIFfacilitya t PSI, Ulrike Grossner, Wojtek Hajdas, Ken Egli, Roge r Brun, and Reno Harboe-Sorensen, RADECS2009.

3 DEVICEINFORMATION

3.1 Devicedescription

The tested device is the A3PE3000L. It is the bigge FPGAfamilyfromACTEL: Itincludes3Milliongates a0.13µmCMOSflashtechnologypackagedinaPQFP the same designs and processes. So the RT3PE3000LR thecommercialdeviceA3PE3000L.TheTable1summar

st device by the number of gates from the ProASIC3L .Thisdevice is a commercial device manufactured w ith 208pins.TheRadiation-Tolerant(RT)familyuses adiation-Tolerant device uses the same silicon as izesthedescriptionofthedevice.

Parttype	A3PE3000L
PartFamily	ProASIC3L
Manufacturer	ACTEL
Package	PQ208
Datecode	0922
Packagemarking	QHR8G
Diedimensions	10.8x10.8mm
Usedsamples	SerializedfromSerialNumber(SN)1to24

Table1:Devicedescription

3.2 DeviceProcurement

40samplesofA3PE3000LpackagedinaPQFP208pins delivered at HIREX. 18 samples (serialized from SN were delidded. 6 samples (serialized from SN 19 to untouched. The left oversamples were reserved for

wereprovidedbyACTELtoESA.Allsampleswere 1 to SN 18) were dedicated to heavy ion testing and SN24) were reserved for proton testing and were le TotallonizationDose(TID)testing.

ft

3.3 Deviceidentification

Packagemarking

Diedimensions

Fulldieview

Diemarking

Figure3:Deviceidentification

3.4 Samplesidentification

The device identification code (IDCODE) is 3E74E1CF device) and share the same IDCODE. However each sam (FSN). The FSN of used samples are provided in the formation of the same statement of the same

All samples are from the same reference (same means pleis stamped with its own Flash Serial Number following Table 2.

SerialNumber(SN)	FlashSerialNumber(FSN)
1	00f5dd483c70
2	00f5dd4c1c64
3	00f5dd484064
4	00f5dd483870
5	00f5dd4c2468
6	00f5dd4c1c70
7	00f5dd480c70
8	00f5dd48286c
9	00f5dd4c2c78
10	00f5dd48206c
11	00f5dd4c405c
12	00f5dd4c304c
13	00f5dd4c2884
14	00f5dd4c2860
15	00f5dd4c3078
16	00f5dd4c1874
17	00f5dd4c4074
18	00f5dd4c3478
19	00f5dd4c487c
20	00f5dd4c2478
21	00f5dd481c64
22	00f5dd4c4078
23	00f5dd481470
24	00f5dd4c2078

Table2:Sampleidentification

A visual identification was materialized on each DU incised. The SN and FSN correspondence was verified

T board where the serial number of the sample was atalltime.

4 RADEFTESTFACILITY

2 Heavy ions test campaign were performed at the cy FinlandinJuneandNovember2010underHIREXEngin

The facility includes a special beam line dedicated devices. It consists of a vacuum chamber including diagnosticequipmentrequiredforthebeamquality

The cyclotron is a versatile, sector-focused accele three external ion sources: two electron cyclotron stateheavyions, and amulticuspions ourceforin in the study of single event effects (SEE) in semic attainable can be determined using the formula clotron accelerator at the University of Jyväskylä, eeringresponsibility.

to irradiation studies of semiconductor components and component movement apparatus and the necessary and intensity analysis.

rator of beams from hydrogen to xenon equipped with resonance (ECR) ion sources designed for high-charg etensebeamsofprotons. The ECR's are especially va luable onductor devices. For heavy ions, the maximum energ y

 $130Q^{2}/M$,

nAtomicMassUnits.

WhereQistheionchargestateandMisthemassi

4.1 Beamqualitycontrol

For measuring beam uniformity at low intensity, a C fixed in the mounting fixture. The uniformity is me results can be plotted immediately formore detaile

A set of four collimated PIN-CsI(TI) detectors is I operated with step motors and are located at 90 deg and uniformity scan they are set to the outer edge homogeneityandflux.

Two beam wobblers and/or a 0.5 microns diffusion Go homogeneity. The foil is placed 3 min front of the and vertically, the proper sweeping area being atta in edw

4.2 Dosimetry

The flux and intensity dosimeter system contains a and four PIN-CsI(TI) detectors. Three collimators device undertest. They can be used to limit the be

At low fluxes a plastic scintillator with a photomu located behind the vacuum chamber and is used befor PIN-CsI(TI) detectors.

sI(TI) scintillator with a PIN-type photodiode read out is asured automatically before component irradiation and the danalysis.

ocated in front of the beam entrance. The detectors are rees with respect to each other. During the irradia tion of the beam in order to monitor the stability of th e

on Go Id foil can be used to achieve good beam chamber. The wobbler-coils vibrate the beam horizo ntally inedwith the adjust able coil-currents.

Faraday cup, several collimators, a scintillation c ounter of different size and shape are placed 25 cm infro ntof the amtothe active are atobest udied.

Itiplier tube is used as an absolute particle count er. It is etheirradiationtonormalize the countrates oft hefour

4.3 Usedions

TheRADEFusedionsarelistedinthefollowingtab

Ionspecie	Energy	LETMeas.@Surface	Range(Si)
	(MeV)	(MeV.cm²/mg)	(µm)
¹⁵ N ⁺⁴	139	1.87	202
²⁰ Ne ⁺⁶	186	3.68	146
⁴⁰ Ar ⁺¹²	372	10.08	118
⁵⁶ Fe ⁺¹⁵	523	18.84	97
⁸² Kr ⁺²²	768	30.44	94
¹³¹ Xe ⁺³⁵	1217	54.95	89

le

Table3:RADEF, usedions and features

5 PIFTESTFACILITY

Proton tests were performed at the Proton Irradiati SwitzerlandinMarch2011underHIREXEngineeringr

A description of PIF test facility can be found in cyclotronisdelivered to the experimental PIF cave to 250 MeV. Then in PIF room, local copper degrader user energies.

on Facility (PIF) at Paul Scherrer Institut (PSI), Villigen, esponsibility.

RD-4. As shown in Figure 4, proton beam from COMET withaninputenergythatcanbevariedfromfewM eVsup scanbeinsertedintothebeam to obtain the diffe rent

In March 2011, 230 MeV input beam's energy was sele resultisshownin Figure 5.

cted and calibrated. The corresponding calibration

Figure4:Proscanfacility

						Target(1)	Degr(2)	Target(1)	Degr(2)	Target(1)	Degr(2)	
	Energy	Degr.	Plastic	IC-target	IC-degr	Fac. 20nA	Fac. 20nA	Fac. 200nA	Fac. 200nA	Fac. 2 uA	Fac. 2 uA	PL6
	[MeV]	[mm]	[cnt/1s]	[cnt/1s]	[cnt/1s]	[p/cnt/cm2]	[p/cnt/cm2]					distance 5.0 cm to collim
Pos 1	230	0.0	265698	724	288	6143.5	15548.5	i				collim 20 mm diam
1	230	0.0	265662	721	286	6168.3	15656.4					1 sec test
			4.5	3.20	3.2	6.16E+03	1.56E+04	6.16E+04	1.56E+05	6.16E+05	1.56E+06	
Pos 1	200	11.5	235645	752	289	5244.8	13741.6	i				
2	200	11.5	234835	747	289	5262.0	13694.3					
			4.5	3.20	3.2	5.25E+03	1.37E+04	5.25E+04	1.37E+05	5.25E+05	1.37E+06	
Pos 1	151.2	28.0	151773	824	288	3081.7	8881.6	i				
3	151.2	28.0	151410	824	289	3074.3	8829.3					
			4.5	3.20	3.2	3.08E+03	8.86E+03	3.08E+04	8.86E+04	3.08E+05	8.86E+05	
Pos 1	101.4	41.4	90201	1015	291	1485.7	5223.3					
4	101.4	41.4	88679	1008	289	1470.8	5171.1					
			4.5	3.20	3.2	1.48E+03	5.20E+03	1.48E+04	5.20E+04	1.48E+05	5.20E+05	
Pos 1	75.3	47.0	62202	1223	291	849.8	3601.9	1				
5	75.3	47.0	61877	1212	288	853.1	3620.8					
			4.5	3.20	3.2	8.51E+02	3.61E+03	8.51E+03	3.61E+04	8.51E+04	3.61E+05	
Pos 1	50.9	50.9	46004	1536	292	500.2	2654.6	Ì				
5	50.9	50.9	45969	1536	291	499.8	2661.8	1				
			4.5	3.20	3.2	5.00E+02	2.66E+03	5.00E+03	2.66E+04	5.00E+04	2.66E+05	
Pos 1	23.5	54.0	20311	2829	286	119.8	1196.8					
5	23.5	54.0	19743	2885	287	114.2	1159.2					
			4.5	3.20	3.2	1.17E+02	1.18E+03	1.17E+03	1.18E+04	1.17E+04	1.18E+05	

Figure5:Calibrationresults-inputenergy230Me Vproton

6 STATEMENTOFWORK-REQUIREMENTS

TheStatementofWork(SOW)requirementsweredefin

- Performheavyion, protonand totalionization dos
- ✓ EvaluatethesensitivitiesofSEL,SEU,SET,SEFI
- \checkmark Check configuration flash after each irradiation s deviceisinconfigurationprocess.
- ✓ Perform tests at room temperature. Further tests p sensitivitywhilepowersuppliesareraisedtoahi
- ✓ Usestatic0,static1,checkerboardandchecker
- ✓ Shiftregistersclockfrequencysetto2,50,100
- Performtestsindvnamiccondition.
- All errors should be detected, time stamped, recor wordaddress, expected value, wordinerror, error

Todosuchcharacterization, the project includedt

6.1 TESTVEHICLEDESIGNREQUIREMENTS

Two test vehicle designs were required. The aim of elementsoftheFPGAwhilethesecondtestvehicle wereapplicable.

The first test vehicle was to be made of shift regi (inverters) between the flip-flops as shown in Figu inverters [or less depending on the timing simulati some chains, a separate fan-out tree with 8 inverte enableorresetpaths.

edinAD-1andAD-2.Herefollowstheboldedparts:

etestsonanA3PE3000Ldevice. andSEGR. teps and additional run should be performed while t

erformed at 80 °C to evaluate the parts to the SEL gherlevelthanthenominalone. boardcomplementedpatterns. and200MHz.

ded and reported with the relevant information like signature,etc.

hedesignof2TestVehicles(TVs).

first test vehicle was to characterize the differen t wastoimplementSEEmitigation.RD-1.RD-2andRD-3

ster chains with or without layers of combinational logic re 6 and the combinational logic made of 8 levels o on results]. It was also requested, each four regis terin rs[orlessdependingonthetimingsimulationresu lts]in

Figure6:Basicshiftregisterblock

In addition to standard 3.3 VLVCMOS I/Os, some cha DDR I/Os. Finally, some chains were requested to be FPGA internal PLL: all other channels having a comm characteristicsofthedifferentshiftregistersof registers outputs of each channel were requested to channelatafrequencyfourtimesslowerthanthec

In addition it was required in the test vehicle as (512x9)(readandwrite),andflashROM(128x8)(re

inswere required to use LVDS differential I/Os and clocked with a 200 MHz clock generated from the on external clock inputs. Table 4 summarizes the theTV1.Eachchannelmadeof1024registers.The fourlast be accessible externally: this allowing the test o fthe hannelclockfrequency.

pecific interface design to test the FPGA internal SRAM adonly).

he

The second test vehicle was required to be made of logic (inverters) between the flip-flops as the fir st OnlyLVCMOSI/Osstandardwastobeusedinthisde

f shift registers with or without layers of combinati onal st test vehicle, plus implementing SEU and SET miti gation. sign.

Chain #	Clock	Logic between registers	Register enable fanout	Register CLR fanout	I/O type
1	External	no	no	no	LVCMOS 3.3V
2	External	no	yes	no	LVCMOS 3.3V
3	External	no	no	yes	LVCMOS 3.3V
4	External	yes	no	no	LVCMOS 3.3V
5	External	no	no	no	DDR 3.3V
6	External	no	no	no	DDR 3.3V
7	External	no	no	no	DDR 3.3V
8	External	no	no	no	DDR 3.3V
9	External	no	no	no	LVDS 2.5V
10	External	no	no	no	LVDS 2.5V
11	Internal, PLL 200 MHz	no	no	no	LVCMOS 3.3V
12	Internal, PLL 200 MHz	no	no	no	LVCMOS 3.3V
13	Internal, PLL 200 MHz	no	no	no	LVCMOS 3.3V
14	Internal, PLL 200 MHz	no	no	no	LVCMOS 3.3V

Table4:TV1-shiftregisterscharacteristics

7

HirexEngineering

ThefirstphaseoftheprojectwastodesigntwoTe

- Specification
- Description
- Simulation
- Testandvalidation

TheresultoftheTestVehicledesignsphaseisrep ortedinAD-5.

ThefirstTVwasusedtocharacterizethesensitivi tyofthedevicewhilethesecondwasusedtochara cterize theSEE mitigation techniques. As a consequence the TV1implemented:

A3PE3000LSEETESTREPORT

- ✓ ShiftRegisters(SR)withdifferentinput/outputc onfigurations
- ✓ ClockConditioningCircuit(CCC)withPhase-locked Loop(PLL)
- ✓ SRAMmemory
- ✓ UFROMmemory

WhilethesecondTVwasfullyusedtoimplementsSE

All shift registers of both TVs were made of 1024 r common:

- Reset(clear)
- Clock
- Enable
- Inputdata

Thecommonclock, enableand resets ignals we rerou sequentiallogiccore(registers)wereimplemented place and route processes of the design were left a placed/routedbyhand).

tedonglobalnetworkresourcesofthedevice.All used byDtypeflip-flopwithenableandclearactivehi gh.The tthe charge of the manufacturer's design software (not

egisters each and, if not specified otherwise, used

7.1 TV1-SHIFTREGISTERS

TheTable5summarizesthespecificationsofshift

registerchannelsimplementedontheTV1.

ShiftRegister	Clock	I/OType	Particularity
1	External	3.3VLVCMOS	Reference
2	External	3.3VLVCMOS	GlobalEnableC-cell
3	External	3.3VLVCMOS	GlobalResetC-cell
4	External	3.3VLVCMOS	C-cell
5	External	3.3VLVCMOS-DDR	DDRI/O
6	External	3.3VLVCMOS-DDR	DDRI/O
7	External	3.3VLVCMOS-DDR	DDRI/O
8	External	3.3VLVCMOS-DDR	DDRI/O
9	External	2.5VLVDS	LVDSI/O
10	External	2.5VLVDS	LVDSI/O
11	CCC/PLL	3.3VLVCMOS	CCC/PLLClock
12	CCC/PLL	3.3VLVCMOS	CCC/PLLClock
13	CCC/PLL	3.3VLVCMOS	CCC/PLLClock
14	CCC/PLL	3.3VLVCMOS	CCC/PLLClock

Table5:TV1-ShiftRegisterspecifications

HRX/SEE/0303Issue03

stVehicles(TVs).Thedesignphaseincluded:

Emitigationtechniquesonshiftregisters.

ThefirstSRisthereference.ItisastandardSR

asitcanbeseenontheFigure7.

Figure7:TV1-SR1-Schematic

On the previous shift register schematic as well as outputs of the Dflip-flops are applicable for the areaccessible externally.

for the following shift register schematics, all d otted four last registers outputs of all shift registers because they

Thesecondshiftregisterisidentical to therefer er signal. Each four register stages have a separated the global one. This principle is detailed on the F channel, the number of inverters on the enable sign first RADEF campaign) to conform to the decision ta 2010.

enceaddingcombinationalcells(C-Cell)ontheglo balenable evelof4inverterscomputinga"localenablesigna l"from igure8.Toincreasethemaximumworkingfrequency ofthis alwasdecreasefrom4to2inOctober2010(after the ta ken during the phone review meeting of October 22

Figure8:TV1-SR2-Schematic

The third shift register is identical to the refere signal.Eachfourregisterstageshaveaseparatel global one. This principle is detailed on the Figur decrease from 4 to 2 in October 2010 (after the fir duringthephonereviewmeetingofOctober22

nce adding combinational cells (C-Cell) on the glob al reset evelof4inverterscomputinga"localresetsignal "from the r e 9. The number of inverters on the reset signal wa s st RADEF campaign) to conform to the decision taken ^{sd}2010.

Figure9:TV1-SR3-Schematic

The fourth shift register is identical to the reference of register. Each combinational path has a separatele 10. To increase the maximum working frequency of the register was decrease from 4 to 2 in October 2010 (decision taken during the phone review meeting of O

ence adding combinational cells (C-Cell) between ea ch velof4inverters. This principle is detailed ont he Figure th is channel, the number of inverters between each

after the first RADEF campaign) to conform to the ctober22 ^{sd}2010.

Figure10:TV1-SR4-Schematic

Theshiftregistersfrom the fifth to the eighthar eidentical to thereference. Using 2 shiftregiste remounted as pair, both pairs include a 3.3 VLVCMOS Double Data inputs data and also use a 3.3 VLVCMOS DDR standar dto drive 2 data outputs each. That principle is detailed on the Figure 11.

Figure11:TV1-SR5,6,7and8-Schematic

The ninth and tenth shift registers are identical t standardasinput and output standard.

The 4 shift registers from the eleventh to the four generatedbytheinternalCCCwithaPLLmodulefro

Those14shiftregistersusedaround30%oftheFPG

With the decrease number of inverters (2 instead of is 200 MHz.

o the SR1. However those channels use a 2.5 V LVDS

teenth are identical to the SR1. However the clock is maglobalinputclock.

A'slogictilesand71inputs/outputspads.

4), the maximum working frequency of the shift reg isters

7.2 TV2-SHIFTREGISTERS

The Table 6 summarizes the specifications of shift different SEU and SET mitigation methods.

registersimplementedontheTV2.6Shiftregisters use5

Ш

ar

etwork

ShiftRegister	Sequential Cell Triplication	I/OBlock Triplication	SETFiltering	Combinational Cell Duplication	Combinational Cell Triplication
1	✓				
2	✓	\checkmark			
3			✓		
4	✓	\checkmark	✓		
5	✓	\checkmark		✓	
6	✓	\checkmark			✓

Table6:TV2-ShiftRegisterspecifications

The first SR of the TV2 is identical to the TV1 SR1 (register) triplication and a voter at the input of Redundancy (TMR) of the sequential logic as SEU mit register while3dataoutput. The same global signa areshared between the 3 lines. That principle isd (the reference). However it includes sequential ce each register stage. This SR uses the Triple Modul igation method. Only 1 data input drives the shift Is (clock, reset and enable) routed on the global net et ailed on the Figure 12.

Figure12:TV2-SR1-Schematic

To ease the understanding of the schematic, on the previous dotted lines for the 4 data outputs of the signal shave not been drawn but still remain applic

The second shift register is similar to the SR1 (of SEU mitigation, but also includes triplication of t input and output as SEU and SET mitigation. Each D so3voters are used at each register stage. That p

previous figure as well as for the following ones, the last4registerstages as well as the global enable eand clear able.

the TV2) using the triplication of the sequential logic as he input and output by using 3 different I/O banks for each flip-flop input is generated using a separate voter and rinciple is detailed on the Figure 13.

Figure13:TV2-SR2-Schematic

The third shift register is identical to the SR1 of at the combinational logic output as SET mitigation current state of the output of the combinational lo ns). That principle is detailed on the Figure 14.

the TV1 (thereference) plusitincludes SET filte ring method . This method consists of voting, with a guard gate , the gic with its own state delayed (here with a delaya round 2

Figure14:TV2-SR3-Schematic

The fourth shift register is identical to the TV2 S additionit includes an SET filtering mitigation wi on the Figure 15.

R2 including sequential logic and I/O bank triplica tion. In thadelayaround3ns. This shift register princip leis detailed

Figure15:TV2-SR4-Schematic

The fifth shift register includes sequential logic duplicationasSEUandSETmitigation.Thatprincip

triplication, IO bank triplication and combinationa I logic leisdetailedontheFigure16.

Figure16:TV2-SR5-Schematic

The sixth shift register implements the full tripli on the Figure 17.

cation(fullTMR)asSEE mitigation. That principle is detailed

Figure17:TV2-SR6-Schematic

With 2 inverters as SET generation line (combinatio generate a voter as well as a guard gate (with a co uses around 78% of the logic tiles and 76 inputs/ou

Time penalties induced by the combinational paths, delays limit the maximum working frequency of thes

nal path) between each register cell, 1 logic tile to mbinational loop) and specified delay lines this de sign tputs.

voters, delay lines, guard gates and additional rou ting hiftregistersto50MHz(70MHzforsomechannels) .

design.

9

al

Ilmemory

gn.

7.3 SRAM

100% of the device embedded SRAM is used on the TV bitsislocatedonthenorthsideofthediewhile theotherhalfislocatedonthesouth.Toaccessa blocks, all blocks are cascaded and the output is m modeforbothread/writeoperations.TheSRAMfunct line,controlsignals,addressanddatabusesandi ssoentirelyindependentoftheremainofthedesi

TheFlashFreezetype1isalsoimplementedonthe

7.4 UFROM

100% of the device embedded UFROM was used on the 8 bits configured with a checkerboard interleaved w dedicatedclock,addressanddatabusesandwasso

TV1.TheUFROMblockwasmadeof128wordsof ith its complement. The UFROM functional block used entirelyindependentoftheremainofthedesign.

1. The first half made of 56 blocks of 512 words of

ultiplexed. The SRAM is implemented in synchronous

ionalblock uses dedicated clock routed on one glob

7.5 CLOCKCONDITIONINGCIRCUIT/PHASE-LOOKEDLOOP

TheTV1includedoneCCCwithPLLconfiguredinas theglobalinputclockwhilethePLLoutputwasrou shiftregistersoftheTV1.ThePLLlockandpower-

taticmodeseton200MHz.Theinputclocksignalw as tedononegloballine.ThePLLoutputwasusedto clock4 downsignalswereoutputandinputofthedesign.

TheTV2designdidnotimplementedtheCCCwithPLL blocks.

7.6 TVRESOURCESUSAGE

TVs. TheTable7summarizestheresourcesusageofboth

	TotalNumber	TotalNumberonTV/1	TotalnumboronT	V2
	Totaiivuilibei	Totalivuiliberon vi	Totainumberonn	٧Z
Coretiles	75264	22758(30%)	58368(78%)	
Coretilesusedas	-	8415(37%)	41984(72%)	
combinationalcell		· · · · · ·		
Coretilesusedas	-	14343(63%)	16384(28%)	
sequentialcell				
I/O	147	139(95%)	76(52%)	
I/Ousedasdifferential	65	13(20%)	0(0%)	
ChipGlobal	6	6(100%)	6(100%)	
QuadrantGlobal	12	0(0%)	0(0%)	
LocalClock	-	0	3	
PLL	2	1(50%)	0(0%)	
RAM(Block)	112	112(100%)	0(0%)	
LowStaticICC	1	0(0%)	0(0%)	
UserFlashROM(Block)	1	1(100%)	0(0%)	
UserJTAG	1	0(0%)	0(0%)	
FlashFreeze	1	Tvpe1	No	

Table7:TVs-Resourcesusage

8 <u>TESTSET-UPANDCONDITIONS</u>

The test system is based on a Virtex-5FPGA (XILINX of test board includes a DUT power supplies control independent channels. A temperature control and reg needed. Ambient temperature is used otherwise. The and the computer running the control ling GUI softwa 18 displays the principle of the test system used for the system.

A. Ithas 168I/Oincluding 44LVDS channels. Thes et
 Ier which manages the DUT power supplies up to 24
 ulation system is added to heat the DUT whenever
 communication between the undervacuum test system
 reismade using a 100 MBit/s Ethernet link. The Fi gure

Figure18:Heavylontestset-up

The DUT side of the tester is composed of a set of connecting directly on the tester implementing volt connectors and the ISP connector. It received on to daughter board received as ample (or socket) direct and terminal resistors. All samples were soldered o socket instead of a device. An access area was real heating system and temperature sensor to take place Both test vehicles used the same hard ware (also the

2 boards as shown on the Figure 19. A mother board age level translators, power supply connectors, LVD S ptheconnectionsystem toplug the daughter board. The lysoldered in the middle as well as decoupling cap acitor n a daughter board. Two daughter boards received a ized below the DUT foot print on both boards to allo wthe in close contact to the bottom of device's package . same samples).

Figure19:DUTboardset

8.1 **Powersupply**

The following 13 channels were defined to monitor t monitored using for each channel a set of selectabl inhibittime...) and we reglobally controlled.

he DUT power supplies. They were independently e parameters (start and stop delay, current thresho Id,

- ✓ 1coresupply
- ✓ 8banksupplies
- ✓ 2PLLsupplies
- ✓ 1chargepumpsupply
- ✓ 1JTAĞsupply

TheTable8detailsthevoltagerangeadmissiblefo

reachchannelpreviouslydefined.

		F	UNCTIONING		PRC	GRAMMING	i
NAME	DESCRIPTION	Min(V)	Nominal(V)	Max(V)	Min(V) N	ominal(V)	Max(V)
Vcc	Coresupplyvoltage	1.35	1.5	1.65 ´	.35	1.5 [·]	1.65
Vccbx	I/OBankSupplyvoltage 2	.25 3.0	2.5 3.3	2.75 3.6	2.25 3.0	2.5 3.3	2.75 3.6
Vccplx	PLLsupplyvoltage	1.35	1.5	1.65	1.35	1.5	1.65
Vjtag	JTAGsupplyvoltage	0	0	0	3	3.3	3.6
Vpump	ChargePumpsupplyvoltage	0	0	0	3	3.3	3.6

Table8:Powersuppliesconditions

The device belonging to the ProASIC3L family (Lmea down to 1.2 Volts. However the device was not prope Forthis reason the corevoltage waskept at 1.5 V.

 $\label{eq:constraint} \begin{array}{ll} \mbox{ninglowpower}) \mbox{is working with the core voltage} (V $$ cc) \\ \mbox{rlyfunctioning when increasing the working frequen } cf. \end{array}$

on

Unusedpowersupplies(likeJTAGandchargepumppo mode),andunusedI/Oswerekeptatthereferencev oltage(0V).

TheTable9summarizestheappliedtestconditions

onthecurrentthresholdsoftheDUTpowersupplies

Target-Mode	Corecurrent threshold (mA)	Bankscurrent thresholds (mA)	PLLcurrent thresholds (mA)	JTAGandPUMP currentthresholds (mA)
TV1-Dynamic	950	600	100	NA
TV1-Static	950	250	100	NA
TV1-FlashFreeze	950	250	100	NA
TV2-Dynamic	950	600	NA	NA
Programming	950	600	100	100

Table9:Powersupplies-Currentthresholds

r

nof

8.2 Shiftregisters

Thebasicshiftregisterstestsequenceusedwas:

Initialization Loop Exposition Check&Fill Endloop

The initialization step was needed to initialize the shift registers with a selected pattern. The chec k& fills tep was made to read and verify the content of all chan nels while they were filled with another (or the sa me) pattern.

Theusedpatternswerethestandardcheckerboarda ndcomplementedcheckerboard,static0andstatic 1. Theshiftregisterclockfrequency(selectablefrom firstTVwhileitwassetto2,37.5,50and70MHz forthesecondTV.

Dynamic tests were performed. One additional run wa system.

SEFIandSEU are treated on a post-treatment proces SEFI, SBU and MBU.

8.3 **SRAM**

TheTV1uses100% of the device's embedded SRAM.I accessall memory blocks, all blocks were cascaded

twasmadeof112blocksof512wordsof9bits.To andtheoutputsweremultiplexed.

sperformed in a static mode using the Hirex shutte

s. This classification process allowed the detectio

The SRAM fill and the SRAM check algorithms (Figure 20 and Figure 21) were both designed to highlight differenttypes of errors (write error, readerror, upset, stuck bits...) of basic memory cells. Each me mory cells on ablock can be sequentially or interleaved manne rtested with different combinations of both algori thms.

Tobetestedtheselectedmemoryblockhasfirstto befilledusingthefillalgorithm.Thenthesame memory blockcanbe:

- ✓ Checkedentirelythenfilledagainentirelymaking thetestsequential.
- ✓ Checkedandfilledmemoryaddresspermemoryaddre ssmakingthetestinterleaved.

TheSRAMfillandcheckalgorithmsreporteach4ty pesoferrorherelistedontheTable10:

Errortype	e FILLalgorithm		CHECKa	algorithm	Errorsource
No-error	Noerrorfrom1write/read		Noerrorfrom1read		NA
Type1	1errorfrom2write/read		1errorfrom2r	eads	Write/Readerror
Type2	NA		2errorsfrom3re	eads/1write	Upset
Type3	2errorsfrom4write/read	3err	orsfrom4	reads/2writes	Snapback
Type4	3errorsfrom4write/read	4err	orsfrom4	reads/2writes	Stuckbit/Bigproblem

Table10:SRAM-Errortypesdefinitions

Theusedpatternswerecheckerboardandcomplement edcheckerboard,static0andstatic1.TheSRAM clockfrequency(selectablefromtheGUI)wassett o20MHz.

Mostlydynamictestswereperformed.Fewadditional shuttersystemandoneadditionalrunwasperformed

runswereperformedinastaticmodeusingtheHir ex intheflashfreezemode.

8.4 <u>UFROM</u>

TheTV1uses100%ofthedevice'sembeddedUFROMm

The UFROM algorithm detailed on the Figure 22 is ba tested. The memory address is increased to the next result of the memory content is estimated as the ma defined as detailed on the Table 11: adeof128wordsof8bits.

sed on 3 reads of each memory address sequentially when the state of the current address is stated. The jority of the read results. By this way, 3 error types are

Errortype	Algorithmsteps	Errorsource
Noerror	0errorfrom2reads	NA
Type1	1errorfrom3reads	Readerror
Type2	2errorsfrom3reads	ReaderrororUpset
Type3	2errorsfrom2reads	Upset

Table11:UFROM-Errortypesdefinitions

Tofastenthetestofthememory,the3 rdreadis"cancelled"ifthe2previousresultsare similar.

Forexample, if 2 successive reads are realized wit error" type is stated (reporting nothing), this inc successive reads result in error cancelling the 3

houtanyerrorthenthe3 rdreadiscancelledandthe"Noreasing the speed of the test. The behavior is simi lar if 2 rdread,statingandreportingtheerrortype3.

Theflashmemorycontentwasconfiguredwithchecke patterns.TheUFROMclockfrequency(selectablefro

rboardinterleavedwithcheckerboardcomplemented mtheGUI)wassetto10MHz.

Figure22:UFROMCheckalgorithm

tion

The

8.5 CCC/PLL

On the TV1, one Clock Conditioning Circuit (CCC) wi staticmode(singlefrequency)seton200MHz.

The SEE sensitivity of the CCC/PLL is evaluated fir registersclockedbytheCCC/PLLoutput.Inthemea togglingstate.

TheCCC/PLLinputclockwasthecommonshiftregist input clock frequency from 200 MHz (the nominal poi sensitivity of the PLL was so characterized from 20 point).

th a Phase-Locked Loop (PLL) was configured in a

st by interpreting clock error signature on the shi ft ntimethePLLlocksignalisverifiedandrecorded when

erinputclock.ThePLLwasverifiedfunctionalwit han nt) and down to lower than 100 MHz. The SEE 0 MHz down to 100 MHz (200 MHz being the nominal

functionality of the device during and after each

e device was running the configuration process to

8.6 ConfigurationFlash, chargepumpandISP

The configuration flash was tested by checking the exposition. Additional runs were performed while th evaluate the SEE sensitivities of the configuration flash, charge pump and ISP. The standard configura sequenceis:

- Erase
- Program
- Verify \checkmark

Theerase, program and verify processes were runal Itogetherandoneatatime, exposed to the beam. resultoftheentireconfigurationprocesswasthen statedbyverifyingthe:

- Successoftheoperation(pass/fail)
- Designfunctionality \checkmark
- √ Re-configurabilityofthedevice

TheconfigurationprocesswasrunwithACTELspecif ictools.

9 HEAVYION-TESTRESULTS

9.1 **POWERSUPPLY**

NoSELhasbeenobserveduptoaLETof55MeV.cm²/ mg(¹³¹Xe³⁵⁺),acumulativefluenceof1E7p/cm²,a temperatureupto125°C,abiasvoltageof1.65V forthecorevoltageand3.6Vfortheinput/output voltage.

The run N°159 from June 2010 campaign at RADEF was
wasperformed on the devices ample SN5 configuredone test run performed in SEL tests condition. It
with the TV1 exposed to Xenonion, atotal fluenceof5E6 p/cm² and a temperature of 125 °C. The chronogr
plotted on following figures from Figure 23 to Figureone test run performed in SEL tests condition. It
with the TV1 exposed to Xenonion, atotal fluenceof

Itcanbeseenonthosefigures3plotsversustime :

- ✓ Thefluxofthebeaminblackcolor.
- ✓ Thevoltageofthechannelinbluecolor.
- ✓ Thecurrentofthechannelinredcolor.

Remarks:

- i. ThefluxoftheRUN159shows2cutsattendedto 2stopsofthebeamline.
- ii. Thesecondbankcurrentchronogramshowslarge shortscaleused(becauseconsumptionisverylight largelyspreadintothefullscale. stepsofcurrent.Thisisduetothevery onthisbank).Sosmallvariationsare
- iii. ThePLLFwasnotusedonthedevicebutstill powered.
- iv. The JTAG and charge pump voltage were kept at 0 V while tested in nominal mode (not configuring the device).
- v. The device was not tested with SEL test conditio n in configuration mode. So no SEL test conditionwasperformed with the JTAG and charge pu mppower supplies on.

Figure23:RADEFJune2010-RUN159-Bank1power supply

Figure24:RADEFJune2010-RUN159-Bank2power supply

Figure25:RADEFJune2010-RUN159-Bank3power supply

Figure26:RADEFJune2010-RUN159-Bank4power supply

Figure27:RADEFJune2010-RUN159-Bank5power supply

Figure28:RADEFJune2010-RUN159-Bank6power supply

Figure29:RADEFJune2010-RUN159-Bank7power supply

Figure30:RADEFJune2010-RUN159-Bank8power supply

Figure31:RADEFJune2010-RUN159-PLLCpower supply

Figure32:RADEFJune2010-RUN159-PLLFpower supply

9.2 TV1-SHIFTREGISTER

9.2.1 TV1-SR1

The Figure 34 displays the SEU cross-sectional area is characterized with an asymptotic cross-section (threshold around 1.8 MeV. cm²/mg.

On the plot, one Weibull fit curve was estimated fr Weibullfitcurveiscalculatedfromthefollowing perbitof the TV1SR1. This SEU cross-section per bit saturation cross-section) below 3E-7 cm² and a LET

om the points and added to the graph. The estimated equation of the cumulative distribution function:

$$\sigma = CSsat(1 - e^{-(x/\lambda)K})$$

Withthefollowingparametersvalues:

K=1 λ =80 X ₀=1.8Mev.cm²/mg CSsat=3E-7cm²

This same Weibull fit curve is then used as referen plots.

ce Weibull curve on all the SEU cross-sectional are a

Figure34:TV1-SR1-SEUcross-sectionalareaper

bit

Anextremelylightinfluenceoftheworkingfrequen as highlighted on the Figure 35. In addition to th estimated and plotted: one fitting the 2MHz points have the same parameters: K, Xoand CSs at. The cycanbeseenontheSEUcross-sectionoftheTV1 SR1 e reference Weibull curve, 2 other Weibull curves w andone fitting the 200 MHz points. The 3 Weibull curves Aparameterisas in Table 12:

Ref. :	HRX/SEE/0303
ssue:	03

Weibullcurve	λparametervalue
Weibullreference	80
Weibullfit-2MHz	100
Weibullfit-200MHz	60
	•

Table12:TV1-SR1λparametervalues

Figure35:TV1-SR1-SEUcross-sectionalareaper bitvs.frequency

The Figure 36 plots the distribution of the SEU. Mo due to clear transition (also called reset transiti transition(transitionfrom'0'to'1').SomeMBUs

sterrors are SBU where almost 2/3 of those errors are on: transition from '1' to '0'). The other 1/3 is m ade of set canbecountedaswell.TheMBUsaremadeof:

- A large majority of arbitrary numbers of consecuti vereset bits which look like a local perturbation, moreorlessspread,ontheglobalresetsignal. Few2consecutivebitstoggled:mostprobablydue ~
 - to2adjacentregistersimpactedbythesameion
- hit.
- Mixesoferrors \checkmark

ThissameSEUdistributionplotisusedasreferenc

eforalltheotherSEUdistributiongraphs.

Figure36:TV1-SR1-SEUdistribution

9.2.2 <u>TV1-SR2</u>

TheTV1SR2channelimplementedcombinationalcells

The SEU cross-sectional area per bit of this channe asymptotic cross-section (saturation cross-section) MeV.cm²/mg.Nodifferencebetweenthis channel and thereference Weibull curve fits well the measured ontheglobalenablesignalpath.

lisplotted on the Figure 37. It is characterized with an below 3E-7 cm² per bit and a LET threshold around thereference is visible on the plot of the cross-s points of this channel.

Figure37:TV1-SR2-SEUcross-sectionalareaper bit

The frequency does not appear to influence the SEU The SEU cross-section are a per bit vs. the frequenc

cross-section or so lightly than it is not clearly visible. yisvisible on the Figure 38.

bitvs.frequency

The Figure 39 plots the SEU distribution. Like the half of those due to clear transition. MBUs percent However another signature of MBU appears. This sign on the local enablesignal caught at the active edg on the enablesignal we recaught that way.

reference channel, mosterrors are SBUs with moret han ages and signatures are like the reference channel. ature shows an un-shifted quartet caused by an SET eof the clock: data are held from shifting. Veryf ew SETs

Figure39:TV1-SR2-SEUdistribution

9.2.3 <u>TV1-SR3</u>

TheTV1SR3channelimplementedcombinationalcells

The SEU cross-sectional area per bit of this channe asymptotic cross-section (saturation cross-section) MeV.cm²/mg. This SEU cross-section is higher than t was estimated from the points and added to the grap parameters:

> K=1 λ =200 Xo=1.8MeV.cm²/mg CSsat=1E-6cm²

ontheglobalresetsignalpath.

lisplotted on the Figure 40. It is characterized with an below 1E-6 cm² per bit and a LET threshold around 1.8 he reference also added to the plot. A Weibull curv e h. The TV1 SR3 Weibull fit curve has the following

Figure40:TV1-SR3-SEUcross-sectionalareaper bit

Because the reset signal is an asynchronous signal level for a time longer or equal to the asynchronou is cleared. As a consequence SEU and SET on the glo register.

eachtimeitsvaluestepsintothebouncesofthea ctive sclearminimumpulsewidth(Twclr#0.3ns),ther bal(orlocal)resetsignallongerthanTwclrclear the

The Figure 41 plots the SEU distribution. Almost 80 transition. There is a high count of MBU compared t due to arbitrary number of reset bits (clear bit).

%ofSEUsareSBUsand70%ofthoseareduetoclea r othereferencechannelandalmostalloftheMBUs are

Figure41:TV1-SR3-SEUdistribution

9.2.4 <u>TV1-SR4</u>

TheTV1SR4channelimplementedcombinationalcells in-betweeneachregister.

TheSEUcross-sectionalareaperbitisequivalent ischaracterizedwithanasymptoticcross-section(thresholdaround1.8MeV.cm²/mg.

tothereferencechannelascomparedontheFigure 42.lt saturationcross-section)below3E-7cm²perbitan daLET

Figure42:TV1-SR4-SEUcross-sectionalareaper bit

The influence of the frequency plotted on the Figur reference Weibull curves of the reference channel w

e43isnothighlyvisibleontheSEUcross-section .The3 erealsoaddedtotheplotforcomparisonpurpose.

Figure43:TV1-SR4-SEUcross-sectionalareaper

bitvs.frequency

Ref.: HRX/SEE/0303 Issue: 03

The Figure 44 plots the SEU distribution. Like the are due to clear transition. Comparing SEU cross-se reference one.

referencechannel,mostSEUsareSBUsand2/3ofth ose ction and signatures, this channel is very similar to the

9.2.5 TV1-SR5,6,7and8

The TV1 SR5, 6, 7 and 8 channels implemented Double stages.

The SEU cross-section area per bit of those channel seen on the Figure 45. It is characterized with an 3E-7cm²perbit and aLET threshold around 1.8 MeV

Data Rate (DDR) registers at the input/output

sisverysimilar to the reference channel as it ca n be asymptotic cross-section (saturation cross-section) below .cm²/mg.

Figure45:TV1-SR5,6,7and8-SEUcross-sectio

nalareaperbit

The Figure 46 plots the SEU distribution. Like the the half of those due to clear transition. MBUssig

reference channel, most SEUs are SBUs with more tha n natures are very similar to thereference channel.

Figure46:TV1-SR5,6,7and8-SEUdistribution

9.2.6 TV1-SR9and10

TheTV1SR9and10channelsimplementedLVDSbuffer

sattheinput/outputstages.

TheSEUcross-sectionalareaperbitisverysimila ischaracterizedwithanasymptoticcross-section(thresholdaround1.8MeV.cm²/mg.

rtothereferencechannel.ltisplottedontheFi gure47.lt saturationcross-section)below3E-7cm²perbitan daLET

Figure47:TV1-SR9and10-SEUcross-sectionala r

reaperbit

TheFigure48plotstheSEUdistribution.Likethe those errors attended to clear transition. The very reference channel.

referencechannel,mostSEUsareSBUswithalmost2 /3of fewMBUsarecomposedofthesamesignaturesthan the

Figure48:TV1-SR9and10-SEUdistribution

9.2.7 TV1-SR11,12,13and14

TheTV1SR11,12,13and14channelswereclockedb

The SEU cross-sectional area per bit is similar to characterized with an asymptotic cross-section (sat threshold around 1.8 MeV.cm²/mg.

ythePLLoutputclock.

the reference channel. It is plotted on the Figure	49.Itis
urationcross-section)below3E-7cm ² perbitanda	LET

Figure49:TV1-SR11,12,13and14-SEUcross-se

ctionalareaperbit

The Figure 50 plots the SEU distribution. Like the halfcoming from clear transition. MBUs signatures total flipor stuck bit of the channel that could early the second sec

e reference channel, most SEUs are SBUs with more tha n es are the same as the reference channel: it was nots een a eadto atotalor partial stop of the PLL output cl ock.

Figure50:TV1-SR11,12,13and14-SEUdistribu tion

nasSEUmitigation.

tistic

son

rbit.

the

s-

9.3 **TV2-SHIFTREGISTER**

One SEFI was detected and recorded during the campa with an effective LET of 55 MeV.cm²/mg. The device tested with a working frequency of 2 MHz. From the endof therun (a fluence of 5E5p/cm²) all therea dd. deviced id not recover from the SEFI state by itsel f.T allowing the next run with the exacts a mecondition st

pa ignatRADEFonNovember2010ontheRUN112 wasconfiguredwiththeTV2andallshiftregisters were lterationN°257 (afluenceof3.69E5p/cm²) up to the ddatafromthedevicewerereadatthelowstate("0").The f.Therecoverytookplaceafterapowercycleoft hedevice stobeperformedwithoutanymoreSEFIdetected.

per bit of this channel. It is based on a poor sta

ceWeibullcurvewasaddedtothegraphforcompari

2decades)onbothSEUcross-sections.TheSEUcros

ection (saturation cross-section) below 2E-9 cm² pe

values was estimated from the points and added to

9.3.1 TV2-SR1

TheTV2SR1implementedsequentialcelltriplicatio

The Figure 51 displays the SEU cross-sectional area attended to the small number of errors. Thereferen purpose. It can be seen a large difference (around section is characterized with an asymptotic cross-s The Weibull fit curve with the following parameters plot:

K=1 λ =80 Xo=1.8MeV.cm²/mg CSsat=2E-9cm²

Figure51:TV2-SR1-SEUcross-sectionalareaper bit

The Figure 52 plots the SEU distribution. More than transition (transition from '1' to '0'). The high p channel is entirely made of arbitrary numbers of re

70%ofSEUsareSBUsandallofthosearedueto ercentage of MBUs (almost 30%) compare to the refe setbits. clear rence

Figure52:TV2-SR1-SEUdistribution

Thesequential cell triplication SEU mitigation ser io SBU vs. MBU ratio. All events appearing on the only between all registers induced all recorded SEU with

iouslydecreasesthetotalamountofSEUandchange sthe y asynchronous global (or local) reset signal shared outanyavailablecorrectionfromthevoter.

9.3.2 TV2-SR2

TheTV2SR2implementedsequentialcellandI/Oblo

The Figure 53 displays the SEU cross-sectional area added to the SEU cross-section graph for comparison decade) between the channel and the reference. The cross-section (saturation cross-section) below 2E-7 A Weibull fit curve was estimated from the measured Weibull fit parameters values are:

K=1 λ =80 Xo=1.8MeV.cm²/mg CSsat=1E-7cm²

This SEU cross-section is high compared to the SEU triplication (TV2SR1). Because both channels uset smaller (or in the worst case an equivalent) cross-hasbeen foundy etto explain the result on this ch

cktriplicationasSEUandSETmitigation.

perbitofthischannel. Thereference Weibullcur veis purpose. It can be seen a small difference (lesst han a SEU cross-section is characterized with an a symptot ic cm² perbit and a LET threshold below 10 MeV. cm²/m g. points and added to the cross-section graph. The

cross-sectionofthechannelusingonlysequential cell hesamesequentialcelltriplicationasSEUmitigat ion, a sectionwasexpectedontheSR2channel.Noexplana tion annel.

Figure53:TV2-SR2-SEUcross-sectionalareaper bit

The Figure 54 plots the SEU distribution. 87 % of S transition. The 13% of MBUs are made of arbitrary

EUs are SBUs and 83 % of those are due to clear numbersofresetbits.

9.3.3 <u>TV2-SR3</u>

TheTV2SR3implementedSETfilteringwithadelay

of2nsasSETmitigation.

The Figure 55 displays the SEU cross-section of thi section (saturation cross-section) below 3E-7 cm²p reference Weibull curve was added to the graph for reference Weibull curve fits well the measured poin

schannel. It is characterized with an asymptotic crosserbitandaLET threshold around 1.8 MeV.cm²/mg.T he comparison purpose and it can be seen than the tsofthischannel.

Figure55:TV2-SR3-SEUcross-sectionalareaper bit

The Figure 56 plots the SEU distribution. Like the than the half due to clear transition. MBUs counts

referencechannel, mostSEUs are SBUs with a little more and signatures are very similar to thereference.

Figure56:TV2-SR3-SEUdistribution

9.3.4 <u>TV2-SR4</u>

TheTV2SR4implementedsequentialcellandl/Oblo delayof3nsasSETmitigation.	cktriplicationasSEUmitigationandSETfiltering witha
NoSEEwasrecordedonthischanneluptoaLETof	55MeV.cm ² /mgandacumulatedfluenceof2E6p/cm ² .
9.3.5 T <u>V2-SR5</u>	
The TV2SR5 implemented sequential cell and I/Oblo asSET mitigation.	ck triplication as SEU mitigation and logic duplica tion
NoSEEwasrecordedonthischanneluptoaLETof	55MeV.cm ² /mgandacumulatedfluenceof2E6p/cm ² .
9.3.6 <u>TV2-SR6</u>	
TheTV2SR6implementedsequentialcellandl/Oblo triplicationasSETmitigation.Thismitigationtec hniqu	cktriplicationasSEUmitigationandcombinational cell ueisalsocalled[full]TripleModularRedunda ncy(TMR).
The Figure 57 plots the SEU cross-sectional area pe statisticbecauseonly2SEUswererecorded. There thegraphforcomparisonpurpose.	r bit of this channel. It is based on an extremely poor ference and the TV2SR1Weibullcurves were added to o

Figure57:TV2-SR6-Heavyion-SEUcross-sectio nalareaperbit

TherecordedSEUswere2SBUsduetocleartransiti on.

HRX/SEE/0303Issue03

9.4 <u>SRAM</u>

 $The SRAMSEU cross-sectional area perbitisplotte cross-section around 4E-8\,cm^2 perbit and a LET thr estimated from the measured points and added to the$

K=1 λ =22.5 Xo=0.2MeV.cm²/mg CSsat=4E-8cm² dontheFigure58.Itischaracterizedwithanasy mptotic esholdbelow1.8MeV.cm²/mg.AWeibullfitcurvewa s graph.TheWeibullfitparametersvaluesare:

As a remark, all test conditions (dynamic, static a section.

nd Flash Freeze) fit well to the estimated SEU cros s-

AshighlightedontheFigure59allSRAMerrorsare The Table 10 summarizes the available error types (showstheverylargemajorityoferrorsareSBU.Th SEUvs.theerroneousbitpositioninsidetheword.

- ✓ 47% of SEU errors are set bit while 53% are rese
- ✓ 47 % of SEU errors are located on the north side w Figure 63).

The north side and south side error counts are clos originated from the variation of the homogeneity of sidesofthedie.

SEUs(checkingtype2-upsetwhilecheckingproce ss). see paragraph 8.3 for further details). The Figure 60 eFigure61displaystheverywellbalanceddistrib utionof Byaveragingthedataofallbitsitcanbestated than:

- tbit(clearbit)(seeFigure62). hile 53 % are on the south side (see
- e. The small difference between the counts can also be the beam on the large distance between the opposit e

Figure59:SRAM-Errortypedistribution

Figure61:SRAM-SEUvs.Bitpositiondistribution

Figure63:SRAM-SEUvs.Blockpositiondistributi on

9.5 UFROM

Noerrorwasobserved(neitherrecorded)ontheUFR totalcumulatedfluenceof1.36E7p/cm².

OMuptoaLETof55MeV.cm²/mg(

131 Xe³⁵⁺)anda

9.6 CCC/PLL

Like the reference channel, most SEUs on the shift SBUs with more than half coming from clear transiti channel. It was not seen a total flip or stuck bit stopofthePLLoutputclock:thePLLoutputclock

ThePLLlocksignalhoweverissensitivetoLargeE One PLL lock signal SEFI event was counted each tim PLLdidnotrecoverbyitself. The recovering proce errorwascountedasanSETeachtimethePLLrecov

register channels clocked by the PLL output clock a re on. MBUs signatures are the same as the reference of the channels' outputs that could lead to a total orpartial neverstopped.

rror(herebelowcalledPLLlocksignalSEFI)andt oSET. ean error appeared on the PLL lock signal and the sswasmadeusingapowercycle.Ontheotherway, the eredbyitself.

4PLLlocksignalSEFIswererecordedonthePLLlo

cksignalunderthefollowingconditions:

SEFI#	1	2	3	4
Frequency(MHz)	100	150	150	100
LET	32.1	32.1	18.5	18.5
(MeV.cm²/mg)				
Conditions	RADEF-June	RADEF-June	RADEF-June	RADEF-June
	2010-RUN22	2010-RUN66	2010-RUN101	2010-RUN121
Fluence(p/cm ²)	5E5	1E6	1E6	1E6

Table13:CCC/PLL-PLLlocksignalSEFIconditions

NoPLLlocksignalSEFIwasrecordedunderthenomi

ThePLLlocksignalSETcross-sectionalareaisplo poor statistic attended to the small number of erro frequencies (200, 150 and 100 MHz) weremoreorles tothegraph. It can be seen than the frequency inf static mode to a nominal frequency of 200 MHz, incr working frequency increased the SET sensitivity. In section is characterized with an asymptotic cross-s MeV.cm²/mg. The nominal Weibull fit curve has the f

> K=1 λ =160 Xo=1.8MeV.cm²/mg CSsat=1E-5cm²

nalcondition.

ttedontheFigure64.ThisSETcross-sectionisba sedon rs. Three Weibull fit curves from 3 different input swellestimatedfromthemeasuredpointsandadded luencestheSETsensitivity.BecausethePLLwasse tona easingthegapbetweenthenominalfrequencyandth e nominal condition, the CCC/PLL lock signal SET cro ssection below 1E-5 cm² and a LET threshold around 1. 8 ollowingparametersvalues:

Figure64:PLLLocksignal-SETcross-sectionalar ea

9.7 CONFIGURATIONFLASH, CHARGEPUMP& INSYSTEMPROGRA MMING

The configuration flash is not sensitive to SEE. Ho sensitivetoSEU,SHEandtothecumulateddosedep

Thefollowingprocesses of the device configuration andcanbestatedtobesensitivetoSEE.

- ✓ Erasing
- Programming
- Verifying

The processes were tested all together and separate ly on the beam. The success of the process, the functionality of the design and the re-configurabil ity of such configured devices was then verified (o nceor twice)offbeam.

ThefollowingTable14summarizesthestatusofthe samples.

FewremarkshavetobemadeontheTable14:

- i. Allstatusarestatedfromfunctionalityofthe designandthere-configurabilityofthesample.Th е failingofthere-configurationwasgenerallyverif iedbyrepeatingtheoperation.
- ii. Thedose(thestatus)afterconfigurationtest isthedose(thestatus)ofthesampleattheendo f thelastconfigurationtestrunperformedunderthe beam.Additionalruns(totestotherpartsof thedevice)canbeperformedonthesamesampleaft erthelastconfigurationtestrun. sampleattheendofthetestcampaign.
- iii. ThestatusafterSEEtestisthestatusofthe
- Thefinaldoseisthetotaldosereceivedbyth iv.
- Thefinalstatusisthestatusofthesamplesta tedattheendofalltests.Allsampleswere ٧. checkedinAugust2011(5monthsafterthelastcam paign).

FromthisTable14, it can be seen than:

- > Overthe6samplestestedinconfigurationmode:
 - ✓ AllwerethesourceofSEUsinducingfailuresint heprogrammingprocess. An off beam reconfiguration was then successfully completed and t he functionality of the design successfullyverified.

esample.

- ✓ 2samples(SN3andSN16)werethesourceofSHE duringtheconfigurationofthesample andweresodestructed.
- 1 sample (SN5) was stated as fail (not configurab test(November2010).Itreceivedacumulateddose statedaspass(fullyfunctionalandre-configurabl
- The influence of the cumulated dose deposited by t sampleSN4.Thissamplewasnotusedtotestthec this sample (29KRad) at the end of the heavy ion t system. The sample did not recover and was still fa configurable)attheendofalltests(August2011)
- 3 samples (SN 8, 10 and 11) failed the re-configur Howevertheyallpassed(fullyfunctionalandre-co

le anymore) at the end of the heavy ion of21KRad.Thesamesamplewasthen

e)attheendofalltests(August2011). he cumulated fluence can also be seen on the onfigurationprocess, but the cumulated dose of est(November2010)damageditsconfiguration iling (design functional but sample not re-

ation verification right after the heavy ion test. nfigurable)thedayafter.

wever the programming part of the configuration fla shis ositedbythecumulatedfluence.

wererununderbeamexpositiontocheckthesensit ivity

00	
113	

SN	Beam Nature	Configuration test	SEU	SHE	Dose (after configuration test) (Rad)	Status (after configuration test)	Status (after SEE test)	Status (after SEE test + 1 day)	Final Dose (Rad)	Final status
1	Heavy lons				na	na	Pass	Pass	0.00E+00	Pass
2	Heavy lons	Х	Х		1.43E+04	Pass	Pass	Pass	1.43E+04	Pass
3	Heavy lons	Х	Х	Х	6.57E+03	Fail	Fail	Fail	6.57E+03	Fail
4	Heavy lons				na	na	not verified	Fail	2.89E+04	Fail
5	Heavy lons	Х	Х		1.21E+04	Pass	Fail	Fail	2.09E+04	Pass
6	Heavy lons	Х	Х		5.00E+03	Pass	Pass	Pass	5.00E+03	Pass
7	Heavy lons				na	na	Pass	Pass	0.00E+00	Pass
8	Heavy lons				na	na	Fail	Pass	2.84E+03	Pass
9	Heavy lons				na	na	Pass	Pass	1.61E+02	Pass
10	Heavy lons				na	na	Fail	Pass	1.92E+03	Pass
11	Heavy lons				na	na	Fail	Pass	1.00E+04	Pass
12	Heavy lons				na	na	Pass	Pass	0.00E+00	Pass
13	Heavy lons				na	na	Pass	Pass	0.00E+00	Pass
14	Heavy lons				na	na	Pass	Pass	0.00E+00	Pass
15	Heavy lons				na	na	Pass	Pass	0.00E+00	Pass
16	Heavy lons	Х	Х	Х	3.20E+03	Fail	Fail	Fail	3.20E+03	Fail
17	Heavy lons	Х	Х		1.05E+03	Pass	Pass	Pass	1.05E+03	Pass
18	Heavy lons				na	na	Pass	Pass	0.00E+00	Pass
19	Proton				na	na	Pass	Pass	2.94E+04	Pass
20	Proton				na	na	Pass	Pass	1.65E+04	Pass
21	Proton				na	na	Pass	Pass	4.41E+03	Pass
22	Proton				na	na	Pass	Pass	0.00E+00	Pass
23	Proton				na	na	Pass	Pass	0.00E+00	Pass
24	Proton				na	na	Pass	Pass	0.00E+00	Pass

Table14:Samplesstatus

10 PROTON-TESTRESULTS

10.1 **POWERSUPPLY**

 $No\,SEL\,has\,been\,observed\,up\,to\,an\,energy\,of\,230\,MeV\,\,,a\,cumulative\,fluence\,of\,6.36E11\,p/cm^2,a\,room\,temperature,abiasvoltageof1.5Vforthecorev\,\,oltageand3.3Vfortheinput/outputvoltage.$

10.2 TV1-SHIFTREGISTER

10.2.1 TV1-SR1

DuetothelowprotonsensitivityoftheDcorefli p-f wassodepositedonthesamplesateachrun:thisl MeV energy was used. The SEU cross-section per bit MeV.

InthepurposetoincreasetheprotonSEUcross-sec shift registers on the design could be increased. H designincludingahighernumberofregisterinside oftheoriginaltestvehicle.

p-flop(register)alargefluencewasneededanda largedose imitingthecharacterization.Asaconsequence,onl y230 bit plotted on the Figure 65 is below 1E-13 cm² at 230

tionstatistics,thetotalnumberofregistercompo singthe owever this would have requested the usage of anoth er eachshiftregisteror the modification of the requested uirements

Figure65:TV1-SR1-SEUcross-sectionalareaper bit

10.2.2 TV1-SR2

TheSEUcross-sectionperbitplottedontheFigure MeV.

66isthesameasthereferencebelow1E-13cm²at 230

Figure66:TV1-SR2-SEUcross-sectionalareaper bit

10.2.3 TV1-SR3

TheSEUcross-sectionperbitplottedontheFigure 67issimilartothereferencechannelbelow1E-13 cm²at 230MeV.

Figure67:TV1-SR3-SEUcross-sectionalareaper bit

10.2.4 TV1-SR4

TheSEUcross-sectionperbitplottedontheFigure 68issimilartothereferencechannelbelow1E-13 cm²at 230MeV.

Figure68:TV1-SR4-SEUcross-sectionalareaper bit

10.2.5 TV1-SR5,6,7and8

TheSEUcross-sectionperbitplottedontheFigure69issimilartothereferencechannelbelow1E-13cm²at230MeV.

Figure69:TV1-SR5,6,7and8-SEUcross-sectio nalareaperbit

10.2.6 TV1-SR9and10

TheSEUcross-sectionperbitplottedontheFigure 70issimilartothereferencechannelbelow1E-13 cm²at 230MeV.

Figure70:TV1-SR9and10-SEUcross-sectionala reaperbit

10.2.7 TV1-SR11,12,13and14

Thosechannelswerenottestedtoproton.

10.3 **TV2-SHIFTREGISTER**

DuetothepoornumberofSEErecordedontheTV2d uringheavyiontestsandthelowprotonsensitivit yof registersoftheTV1,theTV2wasnottestedtopro ton.

10.4 <u>SRAM</u>

TheSRAMSEUcross-sectionalareaperbitisplotte dontheFigure71.Itischaracterizedwithanasy mptotic thresholdbelow23.5MeV. cross-sectionbelow1E-13cm²perbitandanenergy OnesamplewasusedtofullycharacterizetheSRAM atseveralenergieswhileasecondsamplewasused on2energiestoverify.The2samplespointsarev erylikely. Onlythedynamicmodewasusedastestcondition. AshighlightedontheFigure72allSRAMerrorsare SEUs(checkingtype2-upsetwhilecheckingproce ss). The Table 10 summarizes the available error types (see paragraph 8.3 for further details). The Figure 73 U.TheFigure74displaysthewellbalanceddistrib showsthantheverylargemajorityoferrorsareSB utionof SEUvs.theerroneousbitpositioninsidetheword. Byaveragingdataofallbitsitcanbestatedtha n:

\checkmark	58%ofSEUsaresetbitwhile42%areclearbit	(resetbit)(seeFigure75).
\checkmark	50% of SEUs are located on the north side while 5	0%areonthesouthside(seeFigure76).

Figure71:SRAM-SEUcross-sectionalareaperbit

Figure73:SRAM-SBUvs.MBUdistribution

Figure75:SRAM-SEU-Set/Cleardistribution

Figure76:SRAM-SEUvs.Blockpositiondistributi on

10.5 **UFROM**

Noerrorwasobserved(neitherrecorded)ontheUFR fluenceof2.03E10p/cm².

OMuptoanenergyof230MeVandatotalcumulated

10.6 <u>CCC/PLL</u>

ThechannelsclockedbythePLLoutputclockweren

ottestedtoproton.NeitherwastheCCC/PLLblock.

10.7 CONFIGURATIONFLASH, CHARGEPUMP&INSYSTEMPROGRA MMING

The configuration flash is not sensitive to SEE. No sensitivity of the programming part of the configur

additional run was performed with proton to evalua te the ation flash.

11 CONCLUSION

The A3PE3000L flash FPGA from the ProASIC3L family at the following facilities under ESAESTEC contraction the transmission of the second secon

✓ RADEF,UniversityofJyväskylä,Jyväskylä,Finland

✓ PIF,PSI,Villigen,SwitzerlandinMarch2011.

SEE mitigation methods applied on the same die were evaluated.2test vehicles (TV) were designed and t clock conditioning circuit with phase-locked loop a second TV implemented SEU and SET mitigation on 6s madeof1024registersmadeofDcoreflip-flopwit hcles

NoSELwasobserveduptoaLETof55MeV.cm²/mg,a to125°Celsiusandabiasvoltageof1.65Voltsfo r

Theflash(configurationanduser)wasnotseensen intact. However the programming part of the flash w dosedeposited by the cumulated fluence.

One SEFI was detected and recorded during the campa with an effective LET of 55 MeV.cm²/mg. The device tested with a working frequency of 2 MHz. From the endof therun (a fluence of 5E5p/cm²) all therea dd device did not recover from the SEFI state by itsel f.T allowing the next run with the exact same condition st

Concerningtheshiftregisters:

- ✓ The reference and standard shift register (TV1 S asymptotic cross-section below 3E-7 cm² per bit and extremely light influence of the working frequency errors are SBUs where almost 2/3 is due to clear tr numbersofconsecutiveresetbits (clearbit) were
- ✓ The channel implementing combinational cells on th SEUcross-sectional areaperbits imilar to theref e the SEU cross-section or so lightly than it is not SBUs with more than half due to clear transition. M than thereference channel. However another signatu on the enable signal caught at the active edge of t SET son the enablesignal were caught that way.
- The channel implementing combinational cells on the cross-sectional area per bit characterized with an LET threshold around 1.8 MeV.cm²/mg. This SEU cross Almost 80% of SEUs are SBUs and 70% of those ared u MBU compared to the reference channel and almost al reset bits.
- ✓ The channel implementing combinational cells in-be SEU cross-sectional area per bit similar to the ref frequencycanbeseenontheSEUcross-section.Mos cleartransition.ComparingSEUcross-sectionande tothereferenceone.
- ✓ The channels implementing the DDRI/O registers (T V LVDS buffers (TV1 - SR9 and 10) show a SEU cross-se reference.SEE signatures are also like therefore ceso
- ✓ The channels clocked by the PLL output clock (TV1 per bit identical to the reference. Most SEUs are S MBUs are largely attended to reset bits and flipped channels that could lead to a total or partial stop

ily from ACTEL manufacturer was SEE characterized tnumber 22327/09/NL/SFE:

inJuneandNovember2010.

were also characterized and their SEE sensitivities ested. The first TV implemented 14 shift registers, one nd 100 % of the SRAM and UFROM memories. The 6 s hift registers. All shift registers of both TVs wer e hclearandenableactivehigh.

a cumulatedfluenceof1E7p/cm², atemperatureup rthecorevoltageand3.6Voltsfortheinput/outp utvoltage.

sitivetoSEEuptoaLETof55MeV.cm²/mg.Itrema ined as stated sensitive to SEU, SHE and to the cumulate d

ignatRADEFonNovember2010ontheRUN112 wasconfiguredwiththeTV2andallshiftregisters were IterationN°257(afluenceof3.69E5p/cm²)upto the ddatafromthedevicewerereadatthelowstate("0").The f.Therecoverytookplaceafterapowercycleoft hedevice stobeperformedwithoutanymoreSEFIdetected.

R1) SEU cross-section is characterized with an a LET threshold below 1.8 MeV.cm²/mg. An can be seen on the SEU cross-section. Most ansition. Some MBUs largely made of arbitrary counted as well.

e enable signal path (TV1 - SR2) results in an erence. The frequency does not appear to influence visible on the cross-section curve. Most errors are BUs are made of errors with the same signatures reshows un-shifted quartets caused by an SET he clock: data are held from shifting. Very few

eresetsignalpath(TV1-SR3)resultsinaSEU asymptotic cross-section below 1E-6 cm² and a s -sectionperbitishigherthanthereference. etocleartransition.Thereisahighcountof al lof those are due to arbitrary numbers of

tween each register (TV1-SR4) results in an erence. A very light influence of the working tSEUsareSBUsand2/3ofthosearedueto rrorsignatures, this channel seems very similar

V1-SR5to8) and the channels implementing s-se ctional area per bit very similar to the cesones.

-SR11to14)haveaSEUcross-sectionalarea BUs with more than half due to clear transition. bits:itwasnotseen atotal flipor stuck bit of the of the PLL output clock.

)

- ✓ The channel implementing sequential cell triplicat is area per bit characterized with an asymptotic cross difference(around2decades)onitsSEUcross-sect statisticattendedtothesmallnumberoferrors.M are due to clear transition. The high percentage of channel is made of arbitrary numbers of reset bits. decreases the total amount of SEU and changes the S only asynchronous global (or local) reset signal sh SEU without any available correction from the voter
- ✓ Thechannelimplementingsequentialcelltriplicat iona cross-sectional area per bit characterized with an a LET threshold below 10 MeV.cm²/mg, lower than the r implementing only sequential cell triplication. Thi s r channels implementing only the sequential cell trip thesamesequential celltriplicationasSEUmitiga tio cross-section was expected on the SR2 channel. Noe resultonthischannel.
- ✓ The channel implementing the SET filtering method cross-sectional area per bit similar to the referen referencechannel.
- ✓ The channel implementing sequential cell triplicat delayof3ns(TV2-SR4)didnotshowanyeventup fluenceof2E6p/cm².
- Thechannelimplementingsequentialcelltriplicat SR5)didnotshowanyeventuptoaLETof55MeV.c
- The channel made of full TMR mitigation (TV2 SR6 cleared). Based on an extremely poor statistic this implementingonlysequentialcelltriplication(TV2
- ✓ AllthechannelsoftheTV1, expected the channels proton. They all have the same proton SEU cross-sec (withalownumberoferrors)below1E-13cm²at23

The SRAM heavy ion SEU cross-sectional area per bit around4E-8cm²perbitandaLETthresholdbelow1 area per bit is characterized with an asymptotic cr below23.5MeV.AllSEEsareupsetswithaverylar set/cleartransitionsandonRAMblockposition.

ThePLLoutputclockneverstopped.HoweverthePLL SET.Itcanbeseenthanthefrequencyinfluencest mode to a nominal frequency of 200 MHz, increasing working frequency increased those sensitivities. In recordedonthePLLlocksignalwhileitsSETcross small number of errors is characterized with an asy thresholdaround1.8MeV.cm²/mg.

Fewremarkshavetobemade:

- ✓ The sequential cell and I/O block triplication mit igation methods were used on the channels 2, 4, 5 and 6 of the TV2. The yet unexplained phenomenon th at influences the 2 ^{sd} channel does not influence the channel 4,5 and 6.
- TMR shiftregisters have a higher percentage of MB registers.
- ✓ In the purpose to increase the SEU cross-section s tatistics (register) on the TV1 design could be increased. Ho wever this another TV1 design (including a higher number of re gist modification of the requirements of the original te stvehicle.
- ✓ TheperformanceoftheSETfilteringmethodcanon (measured).
- The clock synchronization of global signals (seen catch SETs appearing on the same global signals. Sy veryprobablydecrease these nsitivity of SEUs indu

ion (TV2-SR1) results in a SEU cross-sectional -section below 2E-9 cm². There is a large ionandthereferenceone. Itisbasedonapoor orethan70% of SEUs are SBUs and all of those MBU (almost 30%) compared to the reference The sequential cell triplication SEU mitigation BUvs. MBU ratio. All events appearing on the ared between all registers induced all recorded

ionandl/Obanktriplication(TV2-SR2)hasaSEU asymptotic cross-section below 2E-7 cm² and a he r eference but still higher than the channel s result seems unrealistic compared to the other lication (TV2 SR1). Because both channels use tion,asmaller(orintheworstcaseanequivalent e xplanation has been found yet to explain the

with a delay of 2 ns (TV2 - SR3) has a SEU ce. Its SEEs signatures are also very like the

ion, I/O block triplication and SET filtering with to a LET of 55 MeV.cm²/mg and a cumulated

ion,I/Oblocktriplicationandlogicduplication(TV2-m²/mgandacumulatedfluenceof2E6p/cm².
) was the source of only 2 SBUs (single bit channel look close to the result of the channel -SR1).

clockedwiththePLLoutputclockweretestedto c tion per bit measured from a low sensitivity 0MeV.

it is characterized with an asymptotic cross-section .8MeV.cm²/mg.TheSRAMprotonSEUcross-sectional oss-section below 1E-13 cm² and an energy threshold gemajorityofSBUsverywellbalancedonbitposit ion,on

locksignalissensitivetoPLLlocksignalSEFIa ndto hosesensitivities. Because the PLL was set on ast the gap between the nominal frequency and the nominal condition no any PLL lock signal SEFI was -sectional area based on a poor statistic attended to the mptotic cross-section below 1E-5 cm² and a LET

UcomparedtoSBUthanthenon-mitigatedshift

tatistics, the total number of D core flip-flop wever this would have requested the usage of re gister inside each shift register) or the vehicle.

 $\label{eq:lybeline} lybeevaluated if the {\tt SET} sensitivity is evaluated$

on enable signal) highly reduces the probability to nchronizing the reset (clear) signal should so cedby the SET on the global reset (clear) signal.

HirexEngineering

A3PE3000LSEETESTREPORT

- Thetestofl/Oblocks(I/Obuffersandregisters) accuracybybeingtestedlonelyinsteadofmixedwi
- The usage of SERDES module would have been of greatest system. However requiring the output and the aregisters made it impossible. The high working frequency access

wouldbecharacterizedtoSEEsensitivitywithhig her thotherparts.

a thelpduringthedesignoftheshiftregister cquisitionofthe4lastregisters'outputforall shift uencyofSERDESsystemandthesingledataline andthedatalinecompensation.

12 RADEF-JUNE2010-RUNTABLES

12.1 RUN/BEAM/DUT/SEL-TABLES

	RUN									BE.	AM							D	UT				
							1])	~		~	~			_		5		6				9	
			#	e		S	g/ci	ㅋ		, u	Ğ	S	× ©	Дас		Ľ.		e e	5			Ê	1
*	e e	#	Rur	Ľ.	⊑. <u>9</u>	Σ	L, E	ā	+ 🗑	ig/c	p/	⊊ 5	nflu n².e		z	8	>	ture	2	S	е	Ξļ	
Ē	Ö	Ru	Ę	art	l ⊐ e	Γgγ	2	e	=ĕ	ΕŚ	5	Tati Pi	lear /(cr	p	S	å	H	era	5	-Vio	Σ	i Ei	w٦
			Ϋ́	55		line line	S	ang			ner	D	Σĝ	5		ital		du	Ś	-		is o	
-			Ē				i Francisco	"		ے ^د		Ē		- ⁻ -	G	гĔС		Ĕ G	Ē			ů,	
6	28/06/2010		1	11:30	826/22+	768	32	94		32.1	1.43E+04	1498	9.55E+00	7 34E+00	l n		B	room=40					
7	28/06/2010	6	2	12:02	82Kr22+	768	32	94	Ō	32.1	2.92E+04	296	9.86E+01	1.50E+01	5	12028.6	1p	room=40	1.5	3.3/2.5	Static	-	0
8	28/06/2010	7	3	12:10	82Kr22+	768	32	94	0	32.1	2.90E+04	292	9.93E+01	1.49E+01	5	12043.49	1p	room=40	1.5	3.3/2.5	Static	-	Ō
9	28/06/2010	8	4	12:24	82Kr22+	768	32	94	0	32.1	1.51E+04	159	9.50E+01	7.76E+00	5	12051.25	1p	room=40	1.5	3.3/2.5	Static	-	0
10	28/06/2010	9	5	12:33	82Kr22+	768	32	94	0	32.1	8.12E+03	90	9.02E+01	4.17E+00	5	12055.42	1p	room=40	1.5	3.3/2.5	Static	-	0
11	28/06/2010	10	6	12:40	82Kr22+	768	32	94	0	32.1	7.79E+02	11	7.08E+01	4.00E-01	5	12055.82	1p	room=40	1.5	3.3/2.5	Static	-	0
20	28/06/2010	20	7	02:24	82Kr22+	768	32	94	0	32.1	5.00E+05	443	1.13E+03	2.57E+02	2	256.8	1	room=40	1.5	3.3/2.5	Dyn	-	0
21	28/06/2010	21	8	02:35	82Kr22+	768	32	94	0	32.1	4.82E+05	391	1.23E+03	2.48E+02	2	504.3552	1	room=40	1.5	3.3/2.5	Dyn	-	0
22	28/06/2010	22	9	02:42	82Kr22+	768	32	94	0	32.1	5.00E+05	391	1.28E+03	2.57E+02	2	761.1552	1	room=40	1.5	3.3/2.5	Dyn	-	
23	28/06/2010	23	10	02:50	82Kr22+	768	32	94	0	32.1	5.00E+05	397	1.26E+03	2.57E+02	2	1017.955	1	room=40	1.5	3.3/2.5	Dyn	-	
25	28/06/2010	25	11	03:04	82Kr22+	768	32	94	0	32.1	5.00E+05	395	1.27E+03	2.57E+02	2	1274.755	1	room=40	1.5	3.3/2.5	Dyn	-	
20	20/06/2010	20	12	03.14	02Kr22+	700	22	94	0	32.T	1.0000.000	050	1.27 E +03	2.57 E#02	2	1532.069	1	room=40	1.5	3.3/2.5	Dyn		
20	28/06/2010	20	14	03.40	821/22+	768	32	94	0	32.1	1.00E+00	892	1.17E+03	5.14E+02	2	2640.000	1	room=40	1.5	33/2.5	Dyn		
33	28/06/2010	33	15	04:35	82Kr22+	768	32	94	0	32.1	1.00E+06	779	1.12E+03	5.14E+02	2	3072.869	1	room=40	1.5	3.3/2.5	Dyn	-	L n
34	28/06/2010	34	16	04:50	82Kr22+	768	32	94	0	32.1	1.00E+06	544	1.84E+03	5.14E+02	2	3586.469	1	room=40	1.5	3.3/2.5	Dyn	- 1	Ō
35	28/06/2010	35	17	05:01	82Kr22+	768	32	94	0	32.1	1.00E+06	564	1.77E+03	5.14E+02	2	4100.069	1	room=40	1.5	3.3/2.5	Dyn	-	0
36	28/06/2010	-	18	05:11	82Kr22+	768	32	94	0	32.1	1.09E+05	66	1.65E+03	5.60E+01	2	4156.051	-	room=40	-	-	-	-	-
37	28/06/2010	36	19	05:13	82Kr22+	768	32	94	0	32.1	1.00E+06	579	1.73E+03	5.14E+02	2	4613.669	1	room=40	1.5	3.3/2.5	Dyn	-	0
38	28/06/2010	37	20	05:27	82Kr22+	768	32	94	0	32.1	1.00E+06	485	2.06E+03	5.14E+02	2	5127.269	1	room=40	1.5	3.3/2.5	Dyn FF	-	0
40	28/06/2010	39	21	05:48	82Kr22+	768	32	94	0	32.1	1.00E+06	453	2.21E+03	5.14E+02	2	5640.869	1	room=40	1.5	3.3/2.5	Static	10	0
44	28/06/2010	43	22	06:46	82Kr22+	768	32	94	0	32.1	1.00E+06	618	1.62E+03	5.14E+02	2	6154.469	2	room=40	1.5	3.3/2.5	Dyn	-	0
45	28/06/2010	44	23	06:59	82Kr22+	768	32	94	0	32.1	1.00E+06	661	1.51E+03	5.14E+02	2	6668.069	2	room=40	1.5	3.3/2.5	Dyn	-	
46	28/06/2010	45	24	07:12	82Kr22+	768	32	94	0	32.1	1.00E+06	590	1.45E+03	5.14E+02	2	7181.669	2	room=40	1.5	3.3/2.5	Dyn	-	
4/	20/06/2010	40	25	07:25	02Kr22+	700	32	94	0	32.1	1.0000+00	7.20	1.37 E+03	5.14E+02	2	7095.209 E12.6	2	room=40	1.5	3.3/2.5	Dyn		
51	28/06/2010	45	20	07.03	826/22+	768	32	94	0	32.1	1.00E+00	688	4.03E+03	5.14E+02	3	1027.2	2	room=40	1.5	33/25	Dyn		
52	28/06/2010	51	28	08:45	82Kr22+	768	32	94	n	32.1	1.00E+06	302	3.31E+03	5.14E+02	3	1540.8	2	room=40	1.5	3.3/2.5	Dyn	-	l ñ
54	28/06/2010	53	29	08:53	82Kr22+	768	32	94	Ō	32.1	1.00E+06	204	4.90E+03	5.14E+02	3	2054.4	2	room=40	1.5	3.3/2.5	Dyn	-	ŏ
55	28/06/2010	54	30	08:58	82Kr22+	768	32	94	0	32.1	1.00E+06	205	4.88E+03	5.14E+02	3	2568	2	room=40	1.5	3.3/2.5	Dyn	-	0
60	28/06/2010	59	31	09:27	82Kr22+	768	32	94	0	32.1	1.14E+03	44	2.59E+01	5.86E-01	3	2568.586	1	room=40	1.5	3.3/2.5	Dyn	-	0
62	28/06/2010	61	32	09:37	82Kr22+	768	32	94	0	32.1	1.00E+06	201	4.98E+03	5.14E+02	3	3082.186	1	room=40	1.5	3.3/2.5	Dyn	-	0
64	28/06/2010	63	33	09:44	82Kr22+	768	32	94	0	32.1	1.00E+06	202	4.95E+03	5.14E+02	3	3595.786	1	room=40	1.5	3.3/2.5	Dyn	-	0
66	28/06/2010	65	34	09:52	82Kr22+	768	32	94	0	32.1	1.00E+06	205	4.88E+03	5.14E+02	3	4109.386	1	room=40	1.5	3.3/2.5	Dyn	-	0
67	28/06/2010	66	35	09:58	82Kr22+	768	32	94	0	32.1	1.00E+06	206	4.85E+03	5.14E+02	3	4622.986	1	room=40	1.5	3.3/2.5	Dyn	-	
69	28/06/2010	68	36	10:06	82Kr22+	768	32	94	U	32.1	1.00E+06	210	4.76E+03	5.14E+U2	3	5136.586	1	room=40	1.5	3.3/2.5	Dyn	-	
70	28/06/2010	70	37	10:11	02Kr22+	760	32	94	0	32.1	C C2E+05	215	4.05E+03	5.14E+02	2	5650.166	1	room=40	1.5	3.3/2.5	Dyn		
72	28/06/2010	70	39	10.17	826,22+	768	32	94	0	32.1	7.31E+05	169	4.30E+03	3.75E±02	3	6366 144	1p 1n	room=40	1.5	33/25	-		
72	28/06/2010	72	40	10:21	82Kr22+	768	32	94	0	32.1	3.19E+05	75	4.35E+03	1.64E+02	3	6529 982	1n	room=40	1.5	3.3/2.5	-	-	L n
74	28/06/2010	72b	41	10:29	82Kr22+	768	32	94	Ō	32.1	7.88E+03	4	1.97E+03	4.05E+00	3	6534.029	10	room=40	1.5	3.3/2.5	-	- 1	Ō
75	28/06/2010	73	42	10:36	82Kr22+	768	32	94	0	32.1	6.50E+04	18	3.61E+03	3.34E+01	3	6567.413	1p	room=40	1.5	3.3/2.5	-	-	0
78	28/06/2010	-	43	10:45	15Ne15+	139	1.8	202	0	1.8	6.36E+05	75	8.48E+03	1.83E+01	0	0	B	room=40	-	-	-	-	-
82	28/06/2010	79	44	11:09	15Ne15+	139	1.8	202	0	1.8	2.01E+06	199	1.01E+04	5.79E+01	4	57.888	1	room=40	1.5	3.3/2.5	Dyn	-	0
83	28/06/2010	80	45	11:15	15Ne15+	139	1.8	202	0	1.8	2.01E+06	195	1.03E+04	5.79E+01	4	115.776	1	room=40	1.5	3.3/2.5	Dyn	-	0
84	28/06/2010	81	46	11:20	15Ne15+	139	1.8	202	0	1.8	2.00E+06	203	9.85E+03	5.76E+01	4	173.376	1	room=40	1.5	3.3/2.5	Dyn	-	0
85	28/06/2010	82	47	11:25	15Ne15+	139	1.8	202	0	1.8	2.01E+06	203	9.90E+03	5.79E+01	4	231.264	1	room=40	1.5	3.3/2.5	Dyn	-	0
86	28/06/2010	83	48	11:30	15Ne15+	139	1.8	202	0	1.8	2.00E+06	207	9.66E+03	5.76E+01	4	288.864	1	room=40	1.5	3.3/2.5	Dyn	-	
90	20/06/2010	04	49	11:35	15No15+	139	1.0	202	0	1.0	2.0000+00	200	9.620+03	5.70E+01	4	540.404	1	room=40	1.5	3.3/2.5	Dyn		
90	28/06/2010	88	51	12:00	15No15+	130	1.0	202	0	1.0	2.010+00	210	9.01E+00	5.75E+01	6	115 /88	1	room=40	1.5	3305	Dyn	-	
92	28/06/2010	89	52	12:04	15Ne15+	139	1.0	202	0	1.8	2.01E+06	222	9.05F+03	5.79E+01	6	173.376	1	room=40	1.5	3.3/2.5	Dvn	-	ň
93	28/06/2010	90	53	12:09	15Ne15+	139	1.8	202	0	1.8	2.01E+06	221	9.10E+03	5.79E+01	6	231.264	1	room=40	1.5	3.3/2.5	Dyn	-	Ō
94	28/06/2010	91	54	12:14	15Ne15+	139	1.8	202	0	1.8	2.01E+06	226	8.89E+03	5.79E+01	6	289.152	1	room=40	1.5	3.3/2.5	Dyn	-	0
95	28/06/2010	92	55	12:18	15Ne15+	139	1.8	202	0	1.8	2.00E+06	226	8.85E+03	5.76E+01	6	346.752	1	room=40	1.5	3.3/2.5	Dyn	-	0
96	29/06/2010	93	56	09:22	56Fe15+	523	19	97	0	18.5	1.42E+05	303	4.69E+02	4.20E+01	6	388.784	BS	room=40	1.5	3.3/2.5	-	-	- 1
97	29/06/2010	94	57	09:32	56Fe15+	523	19	97	0	18.5	1.00E+06	264	3.79E+03	2.96E+02	6	684.784	1	room=40	1.5	3.3/2.5	Dyn	-	0
98	29/06/2010	95	58	09:38	56Fe15+	523	19	97	0	18.5	1.00E+06	270	3.70E+03	2.96E+02	6	980.784	1	room=40	1.5	3.3/2.5	Dyn	-	
99	29/06/2010	96	- 59	09:44	56Fe15+	523	19	97	U	18.5	1.00E+06	301	3.32E+03	2.96E+02	6	12/6.784	1	room=40	1.5	3.3/2.5	Dyn	-	
100	29/06/2010	97 QO	0U 61	09:50	56E-15+	523	19	97	0	10.5	1.0000406	319	3.13E+03	2.960 +02	р Б	19/2./84	1	100m=40	1.5	3.3/2.5	Dun		
101	29/06/2010	90 90	62	10:02	56Ee15+	523	19	97	U D	10.5	1.002+06	220	4.00E#03	2.5000+02	8	2164 784	1	room=40	1.5	33/2.5	Dyn		0
102	29/06/2010	101	63	10.03	56Ee15+	523	19	97	D D	18.5	1.00E+06	243	4.12E+03	2.96E+02	a l	2460 784	1	room=40	1.5	3.3/2.5	Dvn		0
105	29/06/2010	102	64	10:12	56Fe15+	523	19	97	Ō	18.5	1.00E+06	247	4.05E+03	2.96E+02	6	2756.784	1	room=40	1.5	3.3/2.5	Dyn		ŏ
106	29/06/2010	103	65	10:23	56Fe15+	523	19	97	0	18.5	1.00E+06	237	4.22E+03	2.96E+02	6	3052.784	1	room=40	1.5	3.3/2.5	Dyn	-	0
107	29/06/2010	104	66	10:28	56Fe15+	523	19	97	0	18.5	1.00E+06	248	4.03E+03	2.96E+02	6	3348.784	1	room=40	1.5	3.3/2.5	Dyn	-	0
109	29/06/2010	106	67	10:51	56Fe15+	523	19	97	0	18.5	1.00E+06	256	3.91E+03	2.96E+02	6	3644.784	2	room=40	1.5	3.3/2.5	Dyn	-	0
110	29/06/2010	107	68	10:56	56Fe15+	523	19	97	0	18.5	1.00E+06	244	4.10E+03	2.96E+02	6	3940.784	2	room=40	1.5	3.3/2.5	Dyn	-	0
111	29/06/2010	108	69	11:02	56Fe15+	523	19	97	0	18.5	1.00E+06	253	3.95E+03	2.96E+02	6	4236.784	2	room=40	1.5	3.3/2.5	Dyn	-	0
112	29/06/2010	109	70	11:07	56Fe15+	523	19	97	0	18.5	1.00E+06	255	3.92E+03	2.96E+02	6	4532.784	2	room=40	1.5	3.3/2.5	Dyn	-	0
113	29/06/2010	110	/1	11:13	156Fe15+	523	19	97	U	18.5	9.74E+05	247	3.94E+03	2.88E+02	6	4821.088	2p	room=40	1.5	3.3/2.5	-	-	
114	29/06/2010	110	72	11:19	50F 015+	523 500	19	9/	0	10.5	0.13E+05	101	3.01E+U3	1.01E+U2	0	0002.535 640.464	∠p 1	room=40	1.5	3.3/2.5	- Dun		
100	23/06/2010	110	7.3	11:51	56E-15+	523	19	3/ 07	U D	10.5	1.0000+06	230	4.240+03	2.3000+02	4	042.404	1	room=40	1.5	3.3/2.5	Dyn		
120	29/06/2010	118	75	12:01	56Ee15+	523	19	97	0	18.5	1.000-+08	191	5.24E+03	2.000+02	4	1234 464	1	room=40	1.0	33/25	Dyn		0
127	29/06/2010	119	76	12:05	56Fe15+	523	19	97	n	18.5	1.00E+06	203	4.93E+03	2.96E+02	4	1530 464	1	room=40	1.5	3.3/2.5	Dvn	-	n
123	29/06/2010	120	77	12:10	56Fe15+	523	19	97	0	18.5	1.00E+06	196	5.10E+03	2.96E+02	4	1826.464	1	room=40	1.5	3,3/2.5	Dvn	-	Ō
124	29/06/2010	121	78	12:16	56Fe15+	523	19	97	0	18.5	1.00E+06	198	5.05E+03	2.96E+02	4	2122.464	1	room=40	1.5	3.3/2.5	Dyn	-	Ō
125	29/06/2010	122	79	12.21	56Ee15+	523	19	97	n	18.5	1.00E+06	204	4 90E+03	2 96E+02	4	2418 464	1	room=40	15	33/25	Dyn		ĺ n

Ref. : HRX/SEE/0303 Issue: 03

		RUN								BE/	AM					1			DUT				
							8															_	
						<	Cm ²	Ê		6	Ē	_		କୁ		ad)		ç,				ŝ	
		:15-	5	Ш,	0	-	ybu	Ē	_	ff.	o/cu	ා	((s	Ľ.		E.		2	S	~		E.	
Le 4	ate	nn #	æ	Ξ.	e i o	- Š	(r)	ତି	l≣t Deg	mg, Tet	e (c	Rion	an f	es es	Z	eso	≥	atr	2	S S	pode	5	Ш
Ē.		æ	ΥFI	Star	- 6	lerg	Me	ge	Ч	ШŇ	BUC	d a	Mea p/(c	b c				Ibel	20	Ś	Σ	siti	0
			÷	0,		ш	E	Rar		(Me	- E	0		La La		ota		e	ĺ ĺ			ď	
•) 🖸) 💽	j	•) " 🖸) 💽		j 🖻) 「 🖸) 💽) 💽) 💽	•	ШŢ	j 🖸
126	29/06/2010	123	80	12:25	56Fe15	+ 523	19	97	0	18.5	1.00E+06	208	4.81E+03	2.96E+02	4	2714.464	1	room=40	1.5	3.3/2.5	Dyn	-	0
127	29/06/2010	124	81	12:30	56Fe15	+ 523	19	97	0	18.5	1.00E+06	205	4.88E+03	2.96E+02	4	3010.464	1	room=40	1.5	3.3/2.5	Dyn	-	0
128	29/06/2010	125	82	12:35	56Fe15	+ 523	19	97	0	18.5	1.00E+06	210	4.76E+03	2.96E+02	4	3306.464	1	room=40	1.5	3.3/2.5	Dyn		0
131	29/06/2010	128	83	12:58	565-15	+ 523	19	97	0	10.5	1.00E+06	162	6.17E+03	2.96E+02	4	3602.464	2	room=40	1.5	3.3/2.5	Dyn	-	
132	29/06/2010	129	85	01:02	56Fe15	+ 523	19	97	0	18.5	1.00E+06	145	7.09E+03	2.96E+02	4	J090.464	2	room=40	1.5	3.3/2.5	Dyn		
134	29/06/2010	131	86	01:08	56Ee15	+ 523	19	97	n	18.5	1.00E+06	145	6.90E+03	2.96E+02	4	4490 464	2	room=40	1.5	3.3/2.5	Dyn		n
135	29/06/2010	-	87	01:37	131Xe35	+ 1217	55	89	Ō	55.3	2.27E+05	240	9.46E+02	2.01E+02	Ó	0	В	room=40	-	-	-		· ·
136	29/06/2010	133	88	01:45	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	253	1.98E+03	4.42E+02	4	4932.864	2	room=40	1.5	3.3/2.5	Dyn	-	0
137	29/06/2010	134	89	01:50	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	268	1.87E+03	4.42E+02	4	5375.264	2	room=40	1.5	3.3/2.5	Dyn	-	0
138	29/06/2010	135	90	01:55	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	261	1.92E+03	4.42E+02	4	5817.664	2	room=40	1.5	3.3/2.5	Dyn	-	0
139	29/06/2010	136	91	02:00	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	263	1.90E+03	4.42E+02	4	6260.064	2	room=40	1.5	3.3/2.5	Dyn	-	0
142	29/06/2010	139	92	02:33	131Xe35	+ 1217	55	89	0	55.3 EE 0	5.00E+05	269	1.86E+03	4.42E+02	4	5/U2.464	1	room=40	1.5	3.3/2.5	Dyn	-	U
143	29/06/2010	140	93	02.40	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	260	1.87E+03	4.42E+02	4	7144.004	1	room=40	1.5	3.3/2.5	Dyn	-	
146	29/06/2010	143	95	02:40	131Xe35	+ 1217	55	89	n	55.3	5.00E+05	263	1.00E+03	4.42E+02	4	8029.664	1	room=40	1.5	3.3/2.5	Dyn		n
147	29/06/2010	144	96	02:58	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	267	1.87E+03	4.42E+02	4	8472.064	1	room=40	1.5	3.3/2.5	Dyn	-	Ō
148	29/06/2010	145	97	03:04	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	276	1.81E+03	4.42E+02	4	8914.464	1	room=40	1.5	3.3/2.5	Dyn	-	0
149	29/06/2010	146	98	03:09	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	265	1.89E+03	4.42E+02	4	9356.864	1	room=40	1.5	3.3/2.5	Dyn		0
150	29/06/2010	147	99	03:15	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	268	1.87E+03	4.42E+02	4	9799.264	1	room=40	1.5	3.3/2.5	Dyn	-	0
151	29/06/2010	148	100	03:21	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	276	1.81E+03	4.42E+02	4	10241.66	1	room=40	1.5	3.3/2.5	Dyn	-	0
152	29/06/2010	149	101	03:26	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	266	1.88E+03	4.42E+02	4	10684.06	1	room=40	1.5	3.3/2.5	Dyn	-	0
153	29/06/2010	150	102	03:39	101Xe35	+ 1217	55	89	0	55.3 EE 0	5.00E+05	183	2.73E+03	4.42E+02	4	15550 40	1	85 02	1.5	3.3/2.5	Dyn	-	
155	29/06/2010	152	103	03:56	131Xe35	+ 1217	55	89	0	55.3	5.00E+06	288	1.54C+04	4.42E+03	4	19974 46	1	105	1.5	33/25	Dyn	÷.	n
156	29/06/2010	153	105	04:05	131Xe35	+ 1217	55	89	0	55.3	5.00E+06	288	1.74E+04	4.42E+03	4	24398.46	1	125	1.5	3.3/2.5	Dyn		Ō
159	29/06/2010	156	106	04:26	131Xe35	+ 1217	55	89	0	55.3	1.62E+06	112	1.45E+04	1.43E+03	4	25831.84	1	125	1.65	3.6/2.5	Dyn	-	0
160	29/06/2010	157	107	04:29	131Xe35	+ 1217	55	89	0	55.3	3.49E+06	196	1.78E+04	3.09E+03	4	28919.79	1	125	1.65	3.6/2.5	Dyn	-	0
162	29/06/2010	159	108	05:10	131Xe35	+ 1217	55	89	0	55.3	5.00E+06	281	1.78E+04	4.42E+03	5	16479.82	1	125	1.65	3.6/2.5	Dyn		0
164	29/06/2010	161	109	05:38	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	31	1.61E+04	4.42E+02	5	16922.22	1	room=40	1.5	3.3/2.5	Dyn	-	0
165	29/06/2010	162	110	05:43	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	123	4.07E+03	4.42E+02	5	17364.62	1	room=40	1.5	3.3/2.5	Dyn	•	0
165	29/06/2010	163	111	05:46	131Xe35	+ 1217	55	89	U	55.3 65.3	5.00E+05	124	4.03E+03	4.42E+U2	5	1/807.02	1	room=40	1.5	3.3/2.5	Dyn	-	0
162	29/06/2010	164	112	05:49	131Xe35	+ 1217 + 1017	55	89 89	0	55.3	5.000000	121	4.13E+03	4.42E+02	5	18249.42	1	room=40	1.5	3.3/2.5	Dyn	-	
169	29/06/2010	166	114	05:52	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	125	4.00E+03	4.42E+02	5	19134.22	1	room=40	1.5	3.3/2.5	Dyn	-	0
170	29/06/2010	167	115	06:01	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	116	4.31E+03	4.42E+02	5	19576.62	1	room=40	1.5	3.3/2.5	Dyn		Ō
171	29/06/2010	168	116	06:04	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	117	4.27E+03	4.42E+02	5	20019.02	1	room=40	1.5	3.3/2.5	Dyn	-	0
173	29/06/2010	170	117	06:20	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	119	4.20E+03	4.42E+02	5	20461.42	1	room=40	1.5	3.3/2.5	Dyn	-	0
174	29/06/2010	171	118	06:23	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	119	4.20E+03	4.42E+02	5	20903.82	1	room=40	1.5	3.3/2.5	Dyn		0
178	29/06/2010	175	119	07:07	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	133	3.76E+03	4.42E+02	8	442.4	2	room=40	1.5	3.3/2.5	Dyn	-	0
179	29/06/2010	176	120	07:10	131Xe35	+ 1217	55	89	0	55.3	5.00E+05	129	3.88E+03	4.42E+02	8	884.8	2	room=40	1.5	3.3/2.5	Dyn	-	
180	29/06/2010	177	121	07:13	1217635	+ 1217	55	89	0	55.3	5.00E+05	130	3.85E+03	4.42E+02	0	1327.2	2	room=40	1.5	3.3/2.5	Dyn	-	
182	29/06/2010	170	122	10/.10	40Ar12	+ 372	10	118	0	10.1	5.00E+05	381	1.59E+03	9.78E+01	8	1867 368	2	room=40	1.0	3.3/2.5	- Dyn	-	
183	29/06/2010	179	123	10:02	40Ar12	+ 372	10	118	0	10.1	2.00E+06	291	6.87E+03	3.23E+02	8	2190 568	2	room=40	15	3 3/2 5	- Dvn		0
184	29/06/2010	180	125	10:16	40Ar12	+ 372	10	118	0	10.1	2.00E+06	217	9.22E+03	3.23E+02	8	2513.768	2	room=40	1.5	3.3/2.5	Dyn	-	0
185	29/06/2010	181	126	10:20	40Ar12	+ 372	10	118	0	10.1	2.00E+06	216	9.26E+03	3.23E+02	8	2836.968	2	room=40	1.5	3.3/2.5	Dyn	-	0
189	29/06/2010	185	127	10:59	40Ar12	+ 372	10	118	0	10.1	2.00E+06	211	9.48E+03	3.23E+02	2	8018.469	2	room=40	1.5	3.3/2.5	Dyn	-	0
190	29/06/2010	186	128	11:03	40Ar12	+ 372	10	118	0	10.1	2.00E+06	193	1.04E+04	3.23E+02	2	8341.669	2	room=40	1.5	3.3/2.5	Dyn	-	0
191	29/06/2010	187	129	11:07	40Ar12	+ 372	10	118	0	10.1	2.00E+06	193	1.04E+04	3.23E+02	2	8664.869	2	room=40	1.5	3.3/2.5	Dyn	-	0
192	29/06/2010	188	130	11:11	40Ar12	+ 372	10	118	0	10.1	2.00E+06	199	1.01E+04	3.23E+02	2	8988.069	2	room=40	1.5	3.3/2.5	Dyn	•	
194	29/06/2010	190	131	11:39	HUARI2	T 372 ≠ 372	10	110	0	10.1	2.00⊑+0b	224	0.93E+U3	3.23E+02	2	9511.269	1	room=40	1.5	3305	Dyn	-	
195	29/06/2010	197	132	11:43	40AH2	+ 372	10	118	n	10.1	2.002+06	227	8.81E+03	3.23E+02	2	9957 669	1	r00m=40	1.5	3 3/2 5	Dyn	-	
197	29/06/2010	193	134	11:52	40Ar12	+ 372	10	118	0	10.1	2.00E+06	228	8.77E+03	3.23E+02	2	10280.87	1	room=40	1.5	3.3/2.5	Dyn	-	0
198	29/06/2010	194	135	11:57	40Ar12	+ 372	10	118	Ō	10.1	2.00E+06	232	8.62E+03	3.23E+02	2	10604.07	1	room=40	1.5	3.3/2.5	Dyn	-	Ō
199	29/06/2010	195	136	12:01	40Ar12	+ 372	10	118	0	10.1	2.00E+06	1.33E+06	1.50E+00	3.23E+02	2	10927.27	1	room=40	1.5	3.3/2.5	Dyn	-	0
201	29/06/2010	197	137	12:08	40Ar12	+ 372	10	118	0	10.1	2.00E+06	236	8.47E+03	3.23E+02	2	11250.47	1	room=40	1.5	3.3/2.5	Dyn	-	0
202	29/06/2010	198	138	12:12	40Ar12	+ 372	10	118	0	10.1	2.00E+06	238	8.40E+03	3.23E+02	2	11573.67	1	room=40	1.5	3.3/2.5	Dyn	-	0
203	29/06/2010	199	139	12:17	40Ar12	+ 372	10	118	0	10.1	2.00E+06	241	8.30E+03	3.23E+02	2	11896.87	1	room=40	1.5	3.3/2.5	Dyn	-	
204	29/06/2010	200	140	12:22	40Ar12	+ 372	10	118	U	10.1	2.00E+06	242	8.26E+03	3.23E+02	2	12220.07	1	room=40	1.5	3.3/2.5	Dyn	-	
205	29/06/2010	201	141	12:27	140Ar12 DOMAR	- J/2	10	1/10	U D	10.1 3.6	∠.UUE+U6	361 120	0.54E+03	_3.∠3E+U2 5.68E±04		12543.2/ Γ	Р	room=40	1.5	3.3/2.5	-	-	
207	29/06/2010	- 203	1/12	12.54	201Ne6-	186	3.6	140	0	3.6	2 00E+05	181	1 10E+03	1 15E+07	2	12658.47	1	room=40	1.5	33/25	- Dyn		
200	29/06/2010	203	143	01:03	20/Ne6-	186	3.6	146	0	3.6	2.00E+06	181	1.10E+04	1.15E+02	2	12030.47	1	room=40	1.5	3.3/2.5	Dyn	-	
210	29/06/2010	205	145	01:07	20Ne6-	186	3.6	146	Ō	3.6	2.00E+06	181	1.10E+04	1.15E+02	2	12888.87	1	room=40	1.5	3.3/2.5	Dyn	-	Ō
211	29/06/2010	206	146	01:11	20Ne6-	186	3.6	146	0	3.6	2.00E+06	188	1.06E+04	1.15E+02	2	13004.07	1	room=40	1.5	3.3/2.5	Dyn	-	0
212	29/06/2010	207	147	01:15	20Ne6-	186	3.6	146	0	3.6	2.00E+06	189	1.06E+04	1.15E+02	2	13119.27	1	room=40	1.5	3.3/2.5	Dyn	-	0
213	29/06/2010	208	148	01:19	20Ne6-	+ 186	3.6	146	0	3.6	2.00E+06	191	1.05E+04	1.15E+02	2	13234.47	1	room=40	1.5	3.3/2.5	Dyn	-	0
214	29/06/2010	209	149	01:23	20Ne6-	- 186	3.6	146	0	3.6	2.00E+06	188	1.06E+04	1.15E+02	2	13349.67	1	room=40	1.5	3.3/2.5	Dyn	-	0
215	29/06/2010	210	150	01:27	20Ne6-	+ 186	3.6	146	0	3.6	2.00E+06	182	1.10E+04	1.15E+02	2	13464.87	1	room=40	1.5	3.3/2.5	Dyn	-	
216	29/06/2010	211	151	01:30	20Ne6-	F 186	3.6	146	0	3.6	2.00E+06	182	1.10E+04	1.15E+02	2	13580.07	1	room=40	1.5	3.3/2.5	Dyn	-	
217	29/06/2010	212	152	01:34	2UNe6-	186	3.6	146	U	3.6	2.00E+06	182	1.10E+04	1.15E+02	2	13695.27	1	room=40	1.5	3.3/2.5	Dyn	-	<u> </u>
219	29/06/2010	214	153	02:01	20Ne6-	- 186 100	3.b 3.c	146	0	3.b 3.c	2.000000	102	1.10E+04	1.15E+U2	2	13010.4/	2	room=40	1.5	3.3/2.5	Dyn	-	
220	29/06/2010	215 216	104	02:00	201460-	100	3.6	140	0	3.6	2.0000+06	179	1.12E+04	1 15E+02	2	13925.07	2	100m=40	1.0	33/2.5	Dyn	-	
227	29/06/2010	217	156	02:10	20Ne6-	186	3.6	146	0	3.6	2.00F+06	178	1.12E+04	1.15E+02	2	14156.07	2	room=40	1.5	3.3/2.5	Dyn		t ö l
223	29/06/2010	218	157	02:17	20Ne6-	186	3.6	146	0	3.6	3.02E+06	263	1.15E+04	1.74E+02	2	14330.02	2p	room=40	1.5	3.3/2.5		-	Ō

12.2 SHIFTREGISTERCONDITIONSANDSEU-TABLES

		SR cor	nditions								S	R - To	tal SE	U						
		ex)																		
		E)																		
#	Ξ	ask	Le L	ide.	-	2	m	4	чл	ى	\sim	œ	o,	9	=	13	9	14	15	16
Line I	Ξ	Σ	oatt	Sal	땅	R	К	К	R	К	R	땅	R	ЧS	КS	ЯS	КS	R	R	SR
	ш. –	UU BU		-																
		- Cha		F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
6				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7	-	-	-	-	-		-	-				-	-			-		-	-	-
8	-	-	-	-	-															-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
11	- 100	-		-	- 12	- 42	- 24	- 20	- 1	-	-	-	-	-	- 10	- 1	-	-	-	-
20	100	3EEE	S0/S1		66	43	21	19	1				1	20	3	1	4			
22	100	3FFF	S0/S1	1	48	42	65	65	54	42	72	44	45	42	35	42	21	46		
23	100	3FFF	CKB /CKB	1	65	75	76	105	71	83	47	54	63	69	59	51	45	52		
25	150	351	CKB /CKB	1	65				27		23		56	68						
26	150	351	S0/S1	1	59				64		46		57	50						
28	200	3FF1	CKB /CKB	1	141				123	85	140	74	118	121	271	297	252	278		
29	200	3FF1	S0/S1	1	106	440	474	400	143	948	163	965	115	131	98	122	77	124		
33	50	366		1	103	113	174	123	102	122	106	97	95	102						
34	2	3FF	CKB /CKB	1	76	92 79	142	58	94 72	90	02 88	79	82	91						
36	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
37	2	3FF	S0/S1	1	91	83	104	85	67	71	91	94	84	98						
38	-	-	-	-																
40	2	3FF	CKB /CKB	1	91	93	136	168	78	92	88	79	89	72						
44	2	FFC7	CKB /CKB	1	15	15	15				103									
45	2	FFC7	S0/S1	1	5	5	5				87									
46	37.5 37.5	FFC7	CKB /CKB	1	1	1	1				08 105									
- 4 7 - 50	2	EEC7	CKB /CKB	1	21	21	21				105									
51	2	FFC7	CKB /CKB	1	13	13	13				92									
52	2	FFC7	S0/S1	1	2	2	2				80									
54	37.5	FFC7	CKB /CKB	1	1	1	1				127									
55	37.5	FFC7	S0/S1	1	2	2	2				96									
60	100	3BFF	CKB /CKB	0													2			
62	100	3BFF	CKB /CKB	1	95	118	195	126	90	118	97	94	89	100		85	93	91		
64	100	3FFF	SU/S1	1	115	95	142	124	84	99	101	107	81	110	119	74	76	100		
67	150	351	SU/ST	1	1114				85 E1		70		10	101						
69	200	3E51	CKB/CKB	-1	81				11		2		49	71	33	27	26	31		
70	200	3F51	S0/S1	1	135				174		156		130	138	109	104	101	121		
71	-	-	-	-	-							-	-			-		-	-	-
72	-	-	-	-	-															-
73	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
74	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
75	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-
/8	- 100	-	- CVB/CVB	- 1	-	-	-	-	-	-	-	-	-	-	- 34	- 1	- 3	-	-	-
83	100	3EEE	S0/S1	1		1									34	- 1	1			
84	150	351	CKB/CKB	1													- '			
85	150	351	S0/S1	1																
86	200	??	СКВ /СКВ																	
87	200	3FF1	S0/S1	1						231		231					1			
90	100	3FFF	CKB /CKB	1											148		10			
91	100	3FFF	SU/S1	1									1							
92	150	351		1																
94	200	3FF1	CKB /CKB	1	7				6	6	9	7	7	12	9	14	9	11		
95	200	3FF1	S0/S1	1	1					196	1	197					-			
96	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-
97	2	3FF	CKB /CKB	1	59	50	116	45	57	46	58	57	62	49						
98	2	3FF	S0/S1	1	55	59	64	52	44	49	56	49	59	59						
99	50	3FF	CKB /CKB	1	57	59	83	58	51	52	51	56	63	49						
100	100	355	SU/S1	1	51	60 EE	66 122	46	64 ee	- 53 - EC	64 EC	48	64 E0	45	OF.	E7	EO	EE		
101	100	3555		1	10 60	- 55 - 59	132	00 59	00 56	55 67	- 59 - 59	62 71	- 56 - 54	18	95	57	36	55 61		
102	150	351	CKB /CKB	1	73	- 59	70	- 59	12	07	24	(1	59	75	- 51	03	- 50	01		
105	150	351	S0/S1	1	56				64		66		62	55						
106	200	3FF1	CKB /CKB	1	5				6	10	3	1	19	13	1	1	1	21		
107	200	3FF1	S0/S1	1	80				114	330	82	314	57	80	60	61	30	58		
109	2	FFC7	CKB /CKB	1							51									
110	2	FFC7	S0/S1	1							52									
111	37.5	FFC7	CKB /CKB	1							49									
112	37.5	FFU/	50/51								51									
113		-	-	-	_	-	-	-	-	-	-	-	-	_	_	-	_	-	-	-
119	2	3FF	CKB /CKB	1	46	41	69	52	64	46	52	55	53	54	-	_		-	-	_
120	2	3FF	S0/S1	1	49	46	70	50	56	50	56	59	45	58						
121	50	3FF	CKB /CKB	1	58	50	80	66	56	50	65	58	58	63						
122	50	3FF	S0/S1	1	56	66	67	62	45	52	65	68	60	55						
123	100	3FFF	CKB /CKB	1	58	59	94	62	75	62	64	53	74	59	86	59	68	52		
124	100	3FFF	S0/S1	1	69	44	62	51	56	60	50	58	67	57	59	60	24	64		
125	150	351	CKB /CKB	1	71				5		29		73	64						

		SR cor	nditions								S	R - Tot	tal SE	U						
		ex)																		
		Ē																		
*	÷	ask	E	e B	-	2	m	4	чл	ى	\sim	ω	0	2	Ξ	2	Ω.	4	ភ្	9
ine	Σ	Ň	atte	/ali	К	Ц	н	Ж	ж	ĸ	Ц	К	Ц	Ě	Ě	ř	Ě	Ě	Ě	Ě
	ш	nel	<u>م</u>	~										U)	03	0	0	0	0	CO
		Jan																		
	-	- t 💽		_ 💽							-									
126	150	351	S0/S1	1	63				73		60		43	51						
127	200	3FF1	CKB /CKB	-1	27				1	5	1		14	33		1	3	10		
128	200	3FF1	S0/S1	1	60				113	275	81	256	65	63	67	59	39	62		
131	2	FFC7	CKB /CKB	1	9	9	9				63									
132	2	FFC7	S0/S1	1							52									
133	37.5	FFC7	CKB/CKB	1	1	1	1				68									
134	37.5	FFC7	SU/S1	1							62									
135	-	-		- 1	- 10	- 10	- 10		-	-	-	-		-	-	-	-	-	-	-
130	2	FFU7		1	0	IU C	0				60									
137	27.5	FFC7		1	16	16	16				02 77									
130	37.5	FEC7	S0/S1	1	10 Q	0 0	10 Q				100									
142	2	3EE	CKB/CKB	1	70	73	224	97	57	67	70	88	59	76						
142	2	3FF	S0/S1	1	70	76	108	69	74	60	57	66	73	57						
144	50	3EE	CKB/CKB	1	93	71	141	89	65	80	78	68	57	83						
146	50	3FF	S0/S1	1	66	90	138	70	72	71	78	64	73	79						
147	100	3FFF	CKB /CKB	1	78	76	172	99	84	71	90	91	108	81	106	95	87	117		
148	100	3FFF	S0/S1	1	83	88	141	76	80	83	81	74	77	94	60	70	60	76		
149	150	351	CKB /CKB	1	82				17		39		88	95						
150	150	351	S0/S1	1	80				92		83		77	80						
151	200	3FF1	CKB /CKB	-1	13				5	2	1		7	30	2		1	8		
152	200	3FF1	S0/S1	1	58				122	264	71	251	71	78	68	72	34	67		
153	200	3FF1	CKB /CKB	1	19				37	32	10	10	16	22	1		2	7		
154	200	3FF1	CKB /CKB	-1	224				28	28	51	5	82	234	22	18	10	72		
155	200	3FF1	CKB /CKB	-1	295				26	49	14	_	99	325	52	50	47	114		
156	200	3FF1	CKB /CKB	-1	666				29	11	7	3	86	553	27	25	31	88		
159	50	3FF	CKB /CKB	U	227	290	630	391	255	266	249	260	225	265						
160	50	3FF	CKB /CKB	1	586	568	13/1	122	546	534	559	5/1	542	587						
162	50	355		1	79	89	189	129	164	167	235	242	81	84						
164	50	255		1	00	00	100	100	53	59	07 7C	73	70	74						
165	50	255		1	93	0U G1	179	131	72 CO	00	70	64	70 57	73						
167	100	SEEE	CKB/CKB	1	60	76	207	88	89	66	83	74	70	73	a 2	80	73	a 3		
168	100	3FFF	S0/S1	1	79	76	132	72	69	71	82	84	76	72	52	74	58	68		
169	150	351	CKB/CKB	1	64	10	132	12	9		62	04	92	141	52	. 4		00		
170	150	351	S0/S1	1	62				82		97		82	69						
171	200	3FF1	CKB /CKB	0	1				20	10	16		39	1	10	10	10	21		
173	200	3FF1	CKB /CKB	1	73				76	49	116	46	79	99	96	97	112	84		
174	200	3FF1	S0/S1	1	92				101	312	103	293	89	86	50	91	70	80		
178	2	FFC7	CKB /CKB	1	17	17	17				88									
179	2	FFC7	S0/S1	1	4	4	4				90									
180	37.5	FFC7	CKB /CKB	1	229	229	229				284									
181	37.5	FFC7	S0/S1	1							79									
182	-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-
183	2	FFC7	CKB /CKB	1							59									
184	2	FFC7	SU/S1	1	24.24	24.24	24.24				54									
185	37.5	FFC7	CKB/CKB	1	3131	3131	3131				3194									
109	2	FFU7		1							60									
190	37.5	EEC7	CKB /CKB	1					-		40									
192	37.5	EEC7	S0/S1	1							51									
194	2	3FF	CKB /CKB	1	60	49	74	69	59	67	52	52	54	44						
195	2	3FF	S0/S1	1	70	67	56	46	47	57	60	51	58	60						
196	50	3FF	CKB /CKB	1	54	59	79	51	53	54	60	51	55	49						
197	50	3FF	S0/S1	1	50	49	79	53	64	58	60	56	47	60						
198	100	3FFF	CKB /CKB	1	62	61	58	64	59	70	61	70	56	64	66	65	64	52		
199	100	3FFF	S0/S1	1	44	34	38	31	35	35	44	57	35	38	42	28	32	39		
201	150	351	CKB /CKB	1	74				13		25		54	75						
202	150	351	S0/S1	1	66				70		75		50	65						
203	200	3FF1	CKB /CKB	1	69				93	46	47	43	67	61	99	96	80	96		
204	200	3FF1	S0/S1	1	71				66	287	101	305	72	46	68	64	20	60		
205	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
207	-	-		- 4	- 7	-	-	- 7	- 40	- 10	-	-	- 10	-	-	-	-	-	-	-
208	2	366		1	10	Ŭ F	E	12	12	UI F	Ø	9	0	0 2						
209	 50	3FF	OKB /OKP	1	10 a	0 11	0 11	10	11	19	0	10	9	э 7						
210	50	3FF	S0/S1	1	9 Q	7	a	14	8	8	11	14	8	í A						
212	100	3EEE	CKB /CKB	1	13	13	13	17	11	13	6	9	13	17	14	20	14	16		
213	100	3FFF	S0/S1	1	9	8	15	9	11	7	10	9	13	17	11	10	8	13		
214	150	351	CKB /CKB	1	15			~	2	-	8	~	7	12		.0	5	.5		
215	150	351	S0/S1	1	17				14		8		10	18						
216	200	3FF1	CKB /CKB	1	15				13	7	- 18	11	10	16	34	36	33	36		
217	200	3FF1	S0/S1	1	18				10	182	15	180	7	7	8	13	4	9		
219	2	FFC7	CKB /CKB	1							11									
220	2	FFC7	S0/S1	1							6									
221	37.5	FFC7	CKB /CKB	1							15									
222	37.5	FFC7	S0/S1	1							9									
223	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

12.3 SHIFTREGISTERCROSS-SECTIONPERBIT-TABLE

								SR - Cross-	Section / Bit	t						
*		N	m	-	ю	(0	~			0		N	m	4	μ	۵
9	è.	Ω.	ŭ	ů.	ů.	ů.	ů.	ŭ	ů,	<u>~</u>	ά.	μ. Έ	Ξ.	Ξ.	μ. Έ	Ē.
	S S	0 0	N N	S	S	o v	o v	N N	o o	0	<u>v</u>	ō	ō	Ω.	ō	0
-	i 🗔	-	-		-				· ·	1 🗖	· ·					•
6	-		-	-	-	-	-	-	-	-	-	-	-		-	-
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	8.398E-08	8.398E-08	6.641E-08	5.859E-08	1.953E-09	-	-		-	5.078E-08	3.711E-08	1.953E-09	7.813E-09	-		
21	1.337E-07	9.725E-08	4.255E-08	3.85E-08	-	-	-	-	2.026E-09	5.673E-08	6.078E-09	2.026E-09	2.026E-09	-	-	-
22	9.375E-08	8.203E-08	1.27E-07	1.27E-07	1.055E-07	8.203E-08	1.406E-07	8.594E-08	8.789E-08	8.203E-08	6.836E-08	8.203E-08	4.102E-08	8.984E-08	-	
23	1.27E-07	1.465E-07	1.484E-07	2.051E-07	1.387E-07	1.621E-07	9.18E-08	1.055E-07	1.23E-07	1.348E-07	1.152E-07	9.961E-08	8.789E-08	1.016E-07	-	-
25	1.27E-07	-	-	-	5.273E-08	-	4.492E-08	-	1.094E-07	1.328E-07	-	-	-	-	-	-
26	1.15E-07	-	-	-	1.248E-07	-	8.966E-08	-	1.111E-07	9.746E-08	-	-	-	-	-	-
28	1.377E-07	-	-	-	1.201E-07	8.301E-08	1.367E-07	7.227E-08	1.152E-07	1.182E-07	2.646E-07	2.9E-07	2.461E-07	2.715E-07	-	-
29	1.035E-07	-	-	-	1.396E-07	9.258E-07	1.592E-07	9.424E-07	1.123E-07	1.279E-07	9.57E-08	1.191E-07	7.52E-08	1.211E-07	-	-
33	1.006E-07	1.104E-07	1.699E-07	1.201E-07	9.961E-08	1.191E-07	1.035E-07	9.473E-08	9.277E-08	9.961E-08	-	-	-	-	-	-
34	1.055E-07	8.984E-08	1.0/4E-0/	1.055E-07	9.18E-08	9.57E-08	8.008E-08	1.064E-07	9.863E-08	8.398E-08	-	-	-	-	-	-
35	7.422E-08	7.715E-08	1.387E-07	5.664E-08	7.031E-08	8.984E-08	8.594E-08	7.715E-08	8.008E-08	8.887E-08	-	-	-	-	-	-
36	-	-	-	-	-	-	-	-	-	-	•	•	•	-		
3/ 20	0.00/E-U8	o. 105E-08	1.016E-07	6.301E-08	0.543E-U8	0.934E-U8	0.00/E-U8	9.18E-08	0.203E-08	9.57 E-08	-	-	-	-	-	-
- JÖ 40	-	-	1 2005 07	1 6415 07	-	-	-	-	-	-	-	-	-	-	-	-
40	0.007E-08	3.002E-08	1.320E-U/	1.041E-07	7.017E-08	0.904E-08	0.094E-08	7.715E-08	0.091E-08	7.031E-08	-	-	-	-	-	-
44	4.003E-09	4.003E-08	4.003E-09		-	-	3.353E-00	-	-	-	-	-	-	-		
40	2 2555 10	2 2555 10	2 2555 10			-	2.032E-00	-	-	-	-	-	-	-		
40	9.766E-10	9.766E-10	9.766E-10			-	3 /18E-08	-	-	-		-	-	-		
50	6.836E-09	6.836E-09	6.836E-09				3 288E-08			-						
51	4 232E-09	4 232E-09	4 232E-09				2 995E-08		-		-	-	-	-		
52	6.51E-10	6.51E-10	6.51E-10	-	-	-	2.604E-08	-	-	-	-	-	-	-		-
54	3.255E-10	3.255E-10	3.255E-10				4.134E-08		-	-	-	-	-	-		
55	6.51E-10	6.51E-10	6.51E-10	-	-	-	3.125E-08	-	-	-	-	-	-	-	-	-
60	-		-			-	-	-	-	-	-	-	1.713E-06	-	-	-
62	9.277E-08	1.152E-07	1.904E-07	1.23E-07	8.789E-08	1.152E-07	9.473E-08	9.18E-08	8.691E-08	9.766E-08	-	8.301E-08	9.082E-08	8.887E-08	-	-
64	1.123E-07	9.277E-08	1.387E-07	1.211E-07	8.203E-08	9.668E-08	9.863E-08	1.045E-07	7.91E-08	7.031E-08	1.162E-07	7.227E-08	7.422E-08	9.766E-08	-	-
66	9.766E-08	-	-	-	8.301E-08	-	1.035E-07	-	1.074E-07	1.133E-07	-	-	-	-	-	
67	1.113E-07	-	-	-	4.98E-08	-	7.031E-08	-	1.172E-07	9.863E-08	-	-	-	-	-	-
69	7.91E-08	-	-	•	1.074E-08	-	1.953E-09	-	4.785E-08	6.934E-08	3.223E-08	2.637E-08	2.539E-08	3.027E-08	-	-
70	1.318E-07	-	-	-	1.699E-07	-	1.523E-07	-	1.27E-07	1.348E-07	1.064E-07	1.016E-07	9.863E-08	1.182E-07	-	-
71	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
72	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
73	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
74	-		-			-	-	-	-	-	-	-	-	-		
78												-	-			
82	-	-	-	-	-	-	-	-	-	-	1.652E-08	4 859E-10	1 458E-09	-	-	-
83		4.859E-10									-	-	4.859E-10	-		
84	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
85	-		-			-	-	-	-	-	-	-	-	-		
86	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
87	-	-	-	-	-	1.128E-07	-	1.128E-07	-	-	-	-	4.883E-10	-	-	-
90	-	-	-	-	-	-	-	-	-	-	7.191E-08	-	4.859E-09	-	-	-
91	-	-	-	-	-	-	-	-	4.883E-10	-	-	-	-	-	-	-
92	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
93	-	-	-	-	-	-	-	-	-	- 5 005 00	-	-	-	-	-	-
94 05	3.401E-09 A 882⊑ 10	-	-	-	∠.⇒15⊏-09	∠.⇒15E-09	4.3730-09	0.401E-09 0.610⊑.09	3.401⊑-09	0.03⊑-U9	4.3730-09	0.002⊏-09	4.3730-09	0.044 ⊏-U 9	-	-
90	4.003E-10	-	-	-	-	9.97 E-U8	+.003E-1U	9.019E-08	-	-	-	-	-		-	-
97	- 5 762E 08	- 4 883E 08	- 1 133E 07	- 4 395E 08	- 5 566E 08	- 4 492E 08	- 5 664E 08	- 5 566E 08	- 6 055E 08	- 4 785E 08		-	-	-		
98	5 371E-08	5.762E-08	6 25E-08	5.078E-08	4 297E-08	4.785E-08	5.469E-08	4 785E-08	5.762E-08	5.762E-08						
99	5.566E-08	5.762E-08	8 105E-08	5.664E-08	4.98E-08	5.078E-08	4.98E-08	5.469E-08	6 152E-08	4 785E-08		-	-	-		
100	4.98E-08	5.859E-08	6.445E-08	4.492E-08	6.25E-08	5.176E-08	6.25E-08	4.688E-08	6.25E-08	4.395E-08	-	-	-	-		
101	7.91E-08	5.371E-08	1.289E-07	5.859E-08	6.445E-08	5.469E-08	5.762E-08	6.055E-08	5.664E-08	7.617E-08	9.277E-08	5.566E-08	5.664E-08	5.371E-08		
102	6.055E-08	5.762E-08	6.836E-08	5.762E-08	5.469E-08	6.543E-08	5.762E-08	6.934E-08	5.273E-08	4.492E-08	4.98E-08	6.152E-08	3.516E-08	5.957E-08	-	-
104	7.129E-08		-		1.172E-08	-	2.344E-08	-	5.762E-08	7.324E-08	-	-	-	-		
105	5.469E-08	-	-	-	6.25E-08	-	6.445E-08	-	6.055E-08	5.371E-08	-	-	-	-	-	-
106	4.883E-09	-	-	-	5.859E-09	9.766E-09	2.93E-09	9.766E-10	1.855E-08	1.27E-08	9.766E-10	9.766E-10	9.766E-10	2.051E-08	-	-
107	7.813E-08	-	-	-	1.113E-07	3.223E-07	8.008E-08	3.066E-07	5.566E-08	7.813E-08	5.859E-08	5.957E-08	2.93E-08	5.664E-08	-	-
109	-	-	-	-	-	-	1.66E-08	-	-	-	-	-	-	-	-	-
110	-	-	-	-	-	-	1.693E-08	-	-	-	-	-	-	-	-	-
111	-	-	-	-	-	-	1.595E-08	-	-	-	-	-	-	-	-	-
112	-	-	-	•	-	-	1.66E-U8	-	-	-	-	-	-	-	-	-
113	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
114	4 4925 09	- 4.004⊑.09	- 6 739⊑ 09	- 5.079⊑.09	- 6 25E 00	- 4 4925 09	- 5 0795 09	- 5 3715 00		- 5 070E 00	-	-	-	-	-	-
119	4.492E-08	4.004E-08	0.700E-00	0.070E-08 4.883⊑ 09	0.∠0E-06 5.460⊑ ∩0	4.492E-08	5.070E-00	5.767=.00	1 395E-08	5.664E.09	-	-	-		-	-
120	4.703E-00	4.402E-00	7.813E-08	4.000E-00	5.400E-00	4.003E-00	6 348E-08	5.664E-08	5.664E-08	6 152E-08	-	-	-		-	
122	5.469E-08	6.445E-08	6.543E-08	6.055E-08	4.395E-08	5.078E-08	6.348E-08	6.641E-08	5.859E-08	5.371E-08		-			-	-
123	5.664E-08	5.762E-08	9.18E-08	6.055E-08	7.324E-08	6.055E-08	6.25E-08	5.176E-08	7.227E-08	5.762E-08	8.398E-08	5.762E-08	6.641E-08	5.078E-08		
124	6.738E-08	4.297E-08	6.055E-08	4.98E-08	5.469E-08	5.859E-08	4.883E-08	5.664E-08	6.543E-08	5.566E-08	5.762E-08	5.859E-08	2.344E-08	6.25E-08	-	-
125	6.934E-08	-	-	-	4.883E-09	-	2.832E-08	-	7.129E-08	6.25E-08	-	-	-	-	-	-

								SR - Cross-	Section / Bit	t						
										_				_		
-#-	5	52	en en	4	<u>ب</u>	9	2	00	6	÷.	1	17	ti	4	Ψ.	1
.ē	ц	ц.	Б	Ľ,	E.	Б.	К	5	ц.	E.	ц.	ц	E.	E	с.	с.
										0,	0,	0,	0,	0,	0,	0,
								i 🗖								
126	6 152E-08				7 129E-08		5 859E 08			4 98E-08						
120	0.132E-00	-		-	0.766E-10	4 000 00	0.766E-10	-	4.100E-00	2 1125 00	-	0.7000 10	- 1 02E 00		-	-
127	2.637 E-00	-	-	-	9.766E-10	4.003E-03	3.766E-10	-	1.367 E-00	3.223E-00	-	9.766E-10	2.93E-09	9.766E-09	-	-
128	5.859E-08	-	-	-	1.104E-07	2.6665-07	7.91E-08	2.5E-07	6.348E-08	6.152E-08	6.543E-08	5.762E-08	3.809E-08	6.055E-08	-	-
131	2.93E-09	2.93E-09	2.93E-09	-	-	-	2.051E-08	-	-	-	-	-	-	-	-	-
132	-	-	-	-	-	-	1.693E-08	-	-	-	-	-	-	-	-	-
133	3.255E-10	3.255E-10	3.255E-10	-	-	-	2.214E-08	-	-	-	-	-	-	-	-	-
134	-	-	-	-	-	-	2.018E-08	-	-	-	-	-	-	-	-	-
135	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
136	6.51E-09	6.51E-09	6.51E-09			-	5.599E-08	-		-	-	-		-	-	-
137	3.906E-09	3.906E-09	3.906E-09	-	-	-	4.036E-08	-	-	-	-	-	-	-	-	-
138	1.042E-08	1.042E-08	1.042E-08				5.013E-08								-	-
139	5.859E-09	5.859E-09	5.859E-09			-	7.096E-08	-		-	-	-			-	-
1/2	1.367E-07	1.426E-07	4 375E-07	1 895E-07	1.113E-07	1 309E-07	1.367E-07	1 719E-07	1 152E-07	1.484E-07	-				-	-
142	1.507 E-07	1.420E-07	1 100E 07	1.000E-07	1.113E-07	1.1705-07	1.112E.07	1 100 - 07	1.102E-07	1.112E.07	-	-		-	-	-
143	1.004E-07	1.404E-07	2.105E-07	1.340E-07	1.440E-07	1.1720-07	1.113E-07	1.209E-07	1.420E-07	1.113E-07	-	-	-	-	-	-
144	1.016E-07	1.307 E-07	2.754E-07	1.730E-07	1.27 E-07	1.563E-07	1.523E-07	1.320E-07	1.113E-07	1.621E-07	-	-	-	-	-	-
146	1.289E-07	1.758E-07	2.695E-07	1.36/E-U/	1.406E-07	1.387E-07	1.523E-07	1.25E-07	1.426E-07	1.543E-07	-	-	-	-	-	-
147	1.523E-07	1.484E-07	3.359E-07	1.934E-07	1.641E-07	1.38/E-07	1.758E-07	1.///E-07	2.109E-07	1.582E-07	2.0/E-07	1.866E-07	1.699E-07	2.285E-07	-	-
148	1.621E-07	1.719E-07	2.754E-07	1.484E-07	1.563E-07	1.621E-07	1.582E-07	1.445E-07	1.504E-07	1.836E-07	1.1/2E-07	1.36/E-07	1.1/2E-07	1.484E-07	-	-
149	1.602E-07	-	-	-	3.32E-08	-	7.617E-08	-	1.719E-07	1.855E-07	-	-	-	-	-	-
150	1.563E-07	-	-	-	1.797E-07	-	1.621E-07	-	1.504E-07	1.563E-07	-	-	-	-	-	-
151	2.539E-08	-	-	-	9.766E-09	3.906E-09	1.953E-09	-	1.367E-08	5.859E-08	3.906E-09	-	1.953E-09	1.563E-08	-	-
152	1.133E-07	-	-	-	2.383E-07	5.156E-07	1.387E-07	4.902E-07	1.387E-07	1.523E-07	1.328E-07	1.406E-07	6.641E-08	1.309E-07	-	-
153	3.711E-08	-	-	-	7.227E-08	6.25E-08	1.953E-08	1.953E-08	3.125E-08	4.297E-08	1.953E-09	-	3.906E-09	1.367E-08	-	-
154	4.375E-08	-	-	-	5.469E-09	5.469E-09	9.961E-09	9.766E-10	1.602E-08	4.57E-08	4.297E-09	3.516E-09	1.953E-09	1.406E-08	-	-
155	5.762E-08	-	-	-	5.078E-09	9.57E-09	2.734E-09	-	1.934E-08	6.348E-08	1.016E-08	9.766E-09	9.18E-09	2.227E-08	-	-
156	1.301E-07	-	-	-	5.664E-09	2.148E-09	1.367E-09	5.859E-10	1.68E-08	1.08E-07	5.273E-09	4.883E-09	6.055E-09	1.719E-08	-	-
159	1.368E-07	1.748E-07	3.798E-07	2.357E-07	1.537E-07	1.603E-07	1.501E-07	1.567E-07	1.356E-07	1.597E-07	-	-	-	-	-	-
160	1.64E-07	1.589E-07	3.836E-07	2.02E-07	1.528E-07	1.494E-07	1.564E-07	1.598E-07	1.517E-07	1.643E-07	-	-	-	-	-	-
162	1.543E-08	1.738E-08	3.691E-08	2.52E-08	3.203E-08	3.262E-08	4.59E-08	4.727E-08	1.582E-08	1.641E-08	-	-	-	-	-	-
164	1.328E-07	1.621E-07	3.281E-07	1.953E-07	1.23E-07	1.152E-07	1.309E-07	1.426E-07	1.387E-07	1.445E-07	-	-	-	-	-	-
165	1.816E-07	1.563E-07	3.496E-07	2.559E-07	1.406E-07	1.27E-07	1.484E-07	1 191E-07	1.367E-07	1.426E-07					-	-
166	1.25E-07	1.191E-07	2.48E-07	1 328E-07	1.328E-07	1.27E-07	1.367E-07	1.25E-07	1.113E-07	1.426E-07	-	-	-	-	-	-
167	1.172E-07	1.484E-07	4 043E-07	1.68E-07	1.738E-07	1.094E-07	1.621E-07	1.445E-07	1.367E-07	1.387E-07	1 797E-07	1.563E-07	1.426E-07	1.816E-07		
168	1.543E-07	1.484E-07	2.578E-07	1.406E-07	1.348E-07	1.387E-07	1.602E-07	1.641E-07	1.484E-07	1.00FE-07	1.016E-07	1.365E-07	1.428E-07	1.328E-07	-	-
169	1.25E-07	1.4042-01	2.5762-07	1.4002-07	1.340E-07	1.5012-01	1.211E-07	1.0412-07	1.404E-07	2.754E-07	1.0102-07	1.4452-07	1.1002-07	1.5266-67		
170	1.211E-07				1.602E-07	-	1.895E-07		1.602E-07	1.348E-07					-	
170	1.953E-09				3.906E-08	1.9535-08	3 125E-08		7.617E-08	1.953E-09	1.953E-08	1.9535-08	1.9535-08	4 102E-08		
173	1.000E-00		-	-	1.484E.07	9.575.08	2 266E 07	- 9 994E 09	1.543E.07	1.934E-07	1.975E-07	1.995E-00	2 189E 07	4.102E-00	-	-
17.5	1.707E.07		-		1.404E-07	5.07 L-00	2.2000-07	6.304E-00	1.343E-07	1.5342-07	0.7665.09	1.03302-07	1.2675.07	1.6412-07		-
174	1.107E-07	- 1 107E 00	1 1075 00	-	1.573E-07	0.034E-07	5 700E 00	0.720E-07	1.730E-07	1.002-07	5.700L-00	1.777 E-07	1.307 E-07	1.303E-07	-	-
170	1.107E-00	1.107E-00	1.107E-00	-	-	-	5.729E-00	-	-	-	-	-	-	-	-	-
179	2.604E-09	2.604E-09	2.604E-09	-	-	-	3.039E-00	-	-	-	-	-	-	-	-	-
100	1.491E-07	1.491E-07	1.491E-07	-	-	-	1.049E-07	-	-	-	-	-	-	-	-	-
181	-	-	-	-	-	-	5.143E-08	-	-	-	-	-	-	-	-	-
182	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
183	-	-	-	-	-	-	9.603E-09	-	-	-	-	-	-	-	-	-
184	-	-	-	-	-	-	8.789E-09	-	-	-	-	-	-	-	-	-
185	5.096E-07	5.096E-07	5.096E-07	-	-	-	5.199E-07	-	-	-	-	-	-	-	-	-
189	-	-	-	-	-	-	9.766E-09	-	-	-	-	-	-	-	-	-
190	-	-	-	-	-	-	7.324E-09	-	-	-	-	-	-	-	-	-
191	-	-	-	-	-	-	8.952E-09	-	-	-	-	-	-	-	-	-
192	-	-	-	-	-	-	8.301E-09	-	-	-	-	-	-	-	-	-
194	2.93E-08	2.393E-08	3.613E-08	3.369E-08	2.881E-08	3.271E-08	2.539E-08	2.539E-08	2.637E-08	2.148E-08	-	-	-	-	-	-
195	3.418E-08	3.271E-08	2.734E-08	2.246E-08	2.295E-08	2.783E-08	2.93E-08	2.49E-08	2.832E-08	2.93E-08	-	-	-	-	-	-
196	2.637E-08	2.881E-08	3.857E-08	2.49E-08	2.588E-08	2.637E-08	2.93E-08	2.49E-08	2.686E-08	2.393E-08	-	-	-	-	-	-
197	2.441E-08	2.393E-08	3.857E-08	2.588E-08	3.125E-08	2.832E-08	2.93E-08	2.734E-08	2.295E-08	2.93E-08	-	-	-	-	-	-
198	3.027E-08	2.979E-08	2.832E-08	3.125E-08	2.881E-08	3.418E-08	2.979E-08	3.418E-08	2.734E-08	3.125E-08	3.223E-08	3.174E-08	3.125E-08	2.539E-08	-	-
199	2.148E-08	1.66E-08	1.855E-08	1.514E-08	1.709E-08	1.709E-08	2.148E-08	2.783E-08	1.709E-08	1.855E-08	2.051E-08	1.367E-08	1.563E-08	1.904E-08	-	-
201	3.613E-08	-	-	-	6.348E-09	-	1.221E-08	-	2.637E-08	3.662E-08	-	-	-	-	-	-
202	3.223E-08	-	-	-	3.418E-08	-	3.662E-08	-	2.441E-08	3.174E-08	-	-	-	-	-	-
203	3.369E-08	-			4.541E-08	2.246E-08	2.295E-08	2.1E-08	3.271E-08	2.979E-08	4.834E-08	4.688E-08	3.906E-08	4.688E-08	-	-
204	3.467E-08	-	-	-	3.223E-08	1.401E-07	4.932E-08	1.489E-07	3.516E-08	2.246E-08	3.32E-08	3.125E-08	9.766E-09	2.93E-08	-	-
205	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
207	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
208	3.418E-09	3.906E-09	5.371E-09	3.418E-09	5.859E-09	4.883E-09	3.906E-09	4.395E-09	4.883E-09	3.906E-09	-	-	-	-	-	-
209	4.883E-09	2.441E-09	2.441E-09	6.348E-09	1.465E-09	2.93E-09	3.906E-09	3.418E-09	4.395E-09	1.465E-09	-	-	-	-	-	-
210	4.395E-09	5.371E-09	5.371E-09	5.859E-09	5.371E-09	8.789E-09	3.906E-09	4.883E-09	4.395E-09	3.418E-09	-	-	-	-	-	-
211	4.395E-09	3.418E-09	4.395E-09	6.836E-09	2.93E-09	2.93E-09	5.371E-09	6.836E-09	3.906E-09	1.953E-09	-	-	-	-	-	-
212	6.348E-09	6.348E-09	6.348E-09	8.301E-09	5.371E-09	6.348E-09	2.93E-09	4.395E-09	6.348E-09	8.301E-09	6.836E-09	9.766E-09	6.836E-09	7.813E-09	-	-
213	4.395E-09	3.906E-09	7.324E-09	4.395E-09	5.371E-09	3.418E-09	4.883E-09	4.395E-09	6.348E-09	8.301E-09	5.371E-09	4.883E-09	3.906E-09	6.348E-09		-
214	7.324E-09	-	-	-	9.766F-10	-	3.906F-09	-	3.418E-09	5.859F-09	-	-	-	-	-	-
215	8.301E-09				6.836E-09	-	3,906E-09	-	4.883E-09	8,789E-09		-				-
216	7.324E-09	-	-	-	6.348E-09	3 418E-09	8 789E-09	5.371E-09	4 883E-09	7 813E-09	1.66E-08	1 758E-08	1.611E-08	1.758E-08	-	-
217	8.789E-09	-	-	-	4.883E-09	8.887E-08	7.324E-09	8.789E-08	3.418E-09	3.418E-09	3.906E-09	6.348F-09	1.953E-09	4.395E-00	-	
219	-	-	-		-		1.79E-09	-	-	-	-		-	-	-	-
220		-	-				9.766E-10	-		-	-	-	-	-		-
221	-	-	-			-	2.441E-09				-	-	-		-	-
222	-	-	-		-	-	1.465E-09	-		-	-	-	-	-	-	-
222	-														-	
22J	-		-			-						-			2	-

12.4 SRAMCONDITIONSANDSEU-TABLES

	SRAM conditions					F	Fill Erro	or Type		Cł	neck E	rror Typ	е						
Line #	F (MHz)	Start Address	Stop Address) Mask (Hex)	# Bit Eff	Pattern	Valide	4	т	2	-	4	е	2	1	scu	MCU	SEU	Cross-Section (Bit)
		-			-		•	-	-	-		-	-	-	-	-	-		
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	- 20	-	- 16383	- 1FF	- 29/912	- CKB/CKB	-	-	-	-	-	-	-	- 360	-	- 355	- 5	- 360	- 2.44E-09
20	20	0	16383	1FF	294912	S0 S1	Ō	0	Õ	Õ	ŏ	0	0	426	Ō	425	1	426	3.00E-09
22	20	0	16383	1FF	294912	S0 S1	1	0	0	0	0	0	0	3902	0	3896	6	3902	2.65E-08
23	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	0	0	0	4004	0	3995	9	4004	2.72E-08
25 26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	0	0	0	8650	0	8633	17	8650	2.93E-08
29	20	0	16383	1FF	294912	S0 S1	1	0	0	0	0	0	0	9082	0	8914	168	9082	3.08E-08
33	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	0	0	0	7771	0	7769	2	7771	2.64E-08
34	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	0	0	0	7679	0	7070	15	7679	2.60E-08
36	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
37	20	0	16383	1FF	294912	S0 S1	1	0	0	0	0	0	0	7220	0	7218	2	7220	2.45E-08
38	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	0	0	0	7372	0	7366	6	7372	2.50E-08
40		-	10303	-	294912	UKD7UKB	-	-	-	-	-	-	-	- 1000	-			- 100	∠.32⊑-Uö -
45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
46	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
47	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
51	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
52	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
54	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
60	20	0	16383	1FF	294912	- СКВ /СКВ	0	0	0	0	0	0	0	0	0	0	0	0	0.00E+00
62	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	0	0	0	7725	0	7698	27	7725	2.62E-08
64	20	0	16383	1FF	294912	S0 S1	1	0	0	0	0	0	0	7670	0	7644	26	7670	2.60E-08
67	20	0	16383	1FF	294912	SU S1	1	0	0	0	0	0	0	7908	0	7881	27	7908	2.68E-08
69	20	0	16383	1FF	294912	CKB /CKB	0	0	0	0	0	0	0	475	0	472	3	475	1.61E-09
70	20	0	16383	1FF	294912	S0 S1	1	0	0	0	0	0	0	8299	0	8275	24	8299	2.81E-08
71	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
72	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
74	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
82	- 20	-	- 16383	- 1FF	- 294912	- CKB /CKB	- 1	-	-	-	-	- 0	-	- 2181	-	- 2179	2	2181	- 3.68E-09
83	20	0	16383	1FF	294912	S0 S1	1	0	0	0	0	0	0	2240	0	2239	1	2240	3.78E-09
84	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	0	0	0	2253	0	2251	2	2253	3.82E-09
- 28 	20	U 22	16383	1FF 22	294912	SU S1 22	1	U	U	U	U	U	U	2334	U	2331	3	2334	3.94E-09
87	20	0	16383	1FF	294912	S0 S1	1	0	0	0	0	0	0	2353	0	2351	2	2353	3.99E-09
90	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	0	0	0	2319	0	2318	1	2319	3.91E-09
91	20	0	16383	1FF	294912	SO S1	1	0	0	0	0	0	0	2265	0	2263	2	2265	3.84E-09
92	20	U N	16383	1FF	294912	CKB7CKB	1		U D	U D	<u>и</u> л	U N	U N	2384	U D	2384	7	2384	4.02E-09 4.04E-09
94	20	0	16383	1FF	294912	CKB /CKB	1	0	Ō	0	Ō	0	0	3585	Ō	3578	7	3585	6.05E-09
95	20	0	16383	1FF	294912	S0 S1	1	0	0	0	0	0	0	2535	0	2531	4	2535	4.30E-09
96	- 20	-	-	-	-	- CKB /CKP	-	-	-	-	-	-	-	-	-	-	-	- 5200	- 1 9∩⊏ ∩0
97	20	0	16363	1FF	294912	SO S1	1	0	0	0	- 0	0	0	5299	0	5296	1	5299	1.00E-00 1.80E-08
99	20	Ō	16383	1FF	294912	CKB /CKB	1	0	Ō	Ō	Ō	0	0	5528	Ō	5525	3	5528	1.87E-08
100	20	0	16383	1FF	294912	S0 S1	1	0	0	0	0	0	0	5258	0	5256	2	5258	1.78E-08
101	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
102	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
105	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
106	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
107	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
110	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
111	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
112	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
114	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
119	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	0	0	0	5215	0	5212	3	5215	1.77E-08
120	20	U N	16383	1FF	294912	SU ST CKB /CKB	1		U D	U D	<u>и</u> л	U N	U N	5146	U D	5139	10	5396	1.74E-08 1.83E-08
122	20	0	16383	1FF	294912	S0 S1	1	0	Ō	0	Ō	0	0	5321	Ō	5318	3	5321	1.80E-08
123	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
124	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
120	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

HRX/SEE/0303Issue03

			SI	RAM co	onditions				Fill Erro	or Type		Ch	neck E	rror Typ	e				
Line #	F (MHz)	Start Address	Stop Address	Mask (Hex)	# Bit Eff	Pattern	Valide	4	m	7	-	4	m	р	1	scu	MCU	SEU	ross-Section (Bit)
				-				•	-	-						•			· · 💽
126	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
127	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
128	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
131	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
133	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
134	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
135	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-
136	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
137	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
138	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-
139	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	- 10	-	-
142	20	0	10000	166	294912		1	0	0	0	-	0	0	5113	0	5101	2	5113	3.47 E-00
143	20	0	16000	166	294912		1	0	0	0	0	0	0	5102	0	5109	14	5162	3.500-00
144	20	0	10000	166	294912		1	0	0	0	0	0	0	5196	0	5102	14	7155	3.520-00
140	20	U	16363	IFF	234312	FOUTOI	- 1	U	U	0		0	U	7255	U	7244		7200	4.520-00
147	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1/10			-	-	-	-	-	-		-			-					-	-
150	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	_	-
151		-	-	-	-		-		-		-	-	-	-	-	-	-		_
152	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
153					Π														-
154	-				0														-
155	-				0														-
156	-				0														-
159	20				0														-
160	20				0														-
162	20				0														-
164	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	0	0	0	5094	0	5002	92	5094	3.45E-08
165	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	0	0	0	5117	0	5099	18	5117	3.47E-08
166	20	0	16383	1FF	294912	S0 S1	1	0	0	0	0	0	0	4856	0	4848	8	4856	3.29E-08
167	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
168	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
169	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
170	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
171	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
173	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
174	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
178	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
179	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
180	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
181	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
182	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
183	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
184	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
185	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
189	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
190	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-
191	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
192	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
194	20	0	10303		294912		1	0	0	0	0	0	0	6040	0	CU60	4	6042	1.17 E-08
100	20	0	10000	155	234312		1	0	0	0	0 D	0	0	7200	0	7000	2	0943 7200	1.100-00
190	20	0	16383	1FF	204012	50 21	1	0	<u>р</u>	0	<u>р</u>	0	0	71/1	0	7130	-5-	71/11	1.24C-00
198	- 20	-		-	-		-	-	-		-	-	-	- 141	-	- 135	-		
199	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-
201			-		-	-	-	-		-				-	.		.	-	-
202	-	-	-	-	-	-	-	-	-	-		-		-	-	-		-	-
203	-	-	-	-	-	-	-	-	-	-				-		-		-	-
203	-		-	-	-	-	-	-	-	-	-			-		-	-	-	-
205	-		-	-	-	-	-	-	-	-	-	-		-		-	-	-	-
207	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
208	20	0	16383	1FF	294912	СКВ /СКВ	1	0	0	0	0	0	0	3355	0	3350	5	3355	5.69E-09
209	20	n	16383	1FF	294912	S0.S1	1	- 0	- 0	- 0	n	- N	- 0	3378	n	3362	16	3378	5.73E-09
210	20	0	16383	1FF	294912	CKB /CKB	1	0	0	0	Ō	0	0	3584	0	3584	0	3584	6.08E-09
211	20	0	16383	1FF	294912	S0 S1	1	0	0	0	0	0	0	3556	0	3553	3	3556	6.03E-09
212	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-		-
213	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
214	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
215	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
216	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
217	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
219	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
220	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
221	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
222	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
223	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

12.5 UFROM/PLL-TABLES

	UFR	OM		PI	L	
					Cross-	Section
#	(7	_	⊢		⊢	
.e	۶.	SEI	ы. S	SE	ы С	SEF
	ш					
-	•	-	F	F	F	-
6	-	-	-	-	-	-
7	-	-	-	-	-	-
8	-	-	-	-	-	-
10	-	-	-	-	-	-
11	-	-	-	-	-	-
20	10	0	0	0	0	0
21	10	0	0	1	0	25.06
22	10	0	3	0	6E-06	20-00
25	-	-	0	0	0	0
26	-	-	0	0	0	0
28 	10	U	U	U 0	U 0	U 0
33	10	0	-	-	-	-
34	10	0	-	-	-	-
35	10	0	-	-	-	-
36	- 10	-	-	-	-	-
38	10	0	-	-	-	-
40	10	0	-	-	-	-
44	-	-	-	-	-	-
45	-	-	-	-	-	-
46 17	-	-	-	-	-	-
50	-	-	-	-	-	
51	-	-	-	-	-	-
52	-	-	-	-	-	-
54	-	-	-	-	-	-
	- 10	-	- 0	-	- 0	-
62	10	Ō	1	Ō	1E-06	Ō
64	10	0	2	0	2E-06	0
66	10	0	2	0	2E-06	0
69	10	0	2	л П	2E-06	1E-06
70	10	Ō	3	0	3E-06	Ö
71	-	-	-	-	-	-
72	-	-	-	-	-	-
73	-	-	-	-	-	-
75	-	-	-	-	-	-
78	-	-	-	-	-	-
82	10	0	0	0	0	0
84	10	0	0	0 0	0	0
85	10	0	0	0	0	0
86	10	0	??	??	??	??
87	10	0	0	0	0	0
90	10	0	0	0	0	0
92	10	0	0	0	0	0
93	10	0	0	0	0	0
94	10	0	1	0	5E-07	0
95	10	U	U	U	U	U
97	10	0	-	-	-	-
98	10	0	-	-	-	-
99	10	0	-	-	-	-
100	10	0	-	-	-	-
107	-	-	1	0	1E-06	
104	-	-	2	1	2E-06	1E-06
105	-	-	1	0	1E-06	0
106	-	-	0	0	0	0
107	-	-	-	U -	i⊏-Ub -	
110	-	-	-	-	-	-
111	-	-	-	-	-	-
112	-	-	-	-	-	-
113	-	-	-	-	-	-
114	- 10	-	-	-	-	-
120	10	Ū	-	-	-	-
121	10	0	-	-	-	-
122	10	0	-	-	-	-
123	_	-	2	U 1	2E-06 2E-06	1E-06
125	-	-	1	0	1E-06	0

	UFF	ROM		PI	_L	
					Cross-	Section
*	Ω Ţ	⊃	⊢	<u></u>	F	<u></u>
ine	Ē	Ш S	Ш	E S	В	Ш.
	ш					
		_	_	_	_	
100	_	-	1		15.00	
126	-	-	і П	0	10-00	0
127	-	-	0	0	0	0
120	-					
132	-	-	-	-	-	_
133	-	-			-	-
134	-	-	-	-	-	-
135	-	-	-	-	-	-
136	-	-	-	-	-	-
137	-	-	-	-	-	-
138	-	-	-	-	-	-
139	-	-	-	-	-	-
142	10	0	-	-	-	-
143	10	0	-	-	-	-
144	10	U	-	-	-	-
146	10	U	-	-	-	
14/	-	-	1	U	2E-U6	
148	-	-	5	0	1.00⊑-05 a⊑ oo	
149	-	-	3 - 1		000-00 1000	
150	-	-	 	0	4C-Ub	
151		-	0	0	0	
152		-	0	0	 	
154	-	-	1	n	2E-07	
155	-	-	N	n	0	n
156	-	-	0	0	0	o l
159	10	0	-	-	-	-
160	10	0	-	-	-	-
162	10	0	-	-	-	-
164	10	0	-	-	-	-
165	10	0	-	-	-	-
166	10	0	-	-	-	-
167	-	-	4	0	8E-06	0
168	-	-	2	0	4E-06	0
169	-	-	4	0	8E-06	0
170	-	-	0	0	0	0
171	-	-	0	0	0	0
173	-	-	1	0	2E-06	0
174	-	-	0	0	0	0
178	-	-	-	-	-	-
179	-	-	-	-	-	-
181	-	-	-	-	-	-
182	-					
183	-	-	-	-	-	-
184	-			-	-	-
185	-	-	-	-	-	-
189	-	-	-	-	-	-
190	-	-	-	-	-	-
191	-	-	-	-	-	-
192	-	-	-	-	-	-
194	10	0	-	-	-	-
195	10	0	-	-	-	-
196	10	0	-	-	-	-
19/	10	U	-	-	-	
198	-	-	∠ 1	0	1E-Ub	
199	-	-	- I	U 0	00-07	
201		-				
202	-	-	0	0	0	
203	_	-	1	0	5E-07	
205	-	-	-	-		-
207	-	-	-	-	-	-
208	10	0	-	-	-	-
209	10	0	-	-	-	-
210	10	0	-	-	-	-
211	10	0	-	-	-	-
212	-	-	0	0	0	0
213	-	-	0	0	0	0
214	-	-	0	0	0	0
215	-	-	0	0	0	0
216	-	-	0	0	0	0
217	-	-	0	0	0	0
219	-	-	-	-	-	-
220	-	-	-	-	-	-
221	-	-	-	-	-	-
222	-	-	-	-	-	-
223	-	-	-	-	-	-

12.6 CONFIGURATION-TABLE

			CONFIGURATION
Line #	Configuration step	Result	Details
7		Eailed	Evit 11 - Verify 0 failed at row 7419
. 8	All	Failed	Exit 11 - Verify 5 tailed at row 3173
9	Erasing	Passed	
10	Programming	Failed	Exit 11 - Verify 0 failed at row 6166
11	Verifying	Failed	Exit 11 - Verifγ́ Ο failed at row 7246
71	All	Failed	Exit 11 - Verify O failed at row 7033
72	Erasing	Failed	Exit -24 - Failed to program UROW
73	Programming	Failed	Exit 11 - Failed to verify FlashROM at row 7
75	Verifying	Failed	Exit 11 - Verify 0 failed at row 7534
113	All	Failed	Exit 11 - Verify 0 failed at row 7843
114	Erasing	Failed	Exit -24 - Failed to program UROW
205	All	Failed	Exit 8 - Failed Erase Operation
223	All	Failed	Exit 8 - Failed Erase Operation

13 RADEF-NOVEMBER2010-RUNTABLES

13.1 RUN/BEAM/DUT/SEL/SEFI-TABLES

			RUN								BE/	AM		DUT												
Line #	Date	Run #	Start Time	JYFL Run #	JYFL Start time	lon specie	Energy (MeV)	LET (MeV/(mg/cm²))	Range (µm)	(Deq)	LET eff. surface (MeV/(mg/cm²))	Fluence (#/cm²)	Run Duration (s)	Mean Flux (#/(cm²xs))	Run Dose (Rad)	SN	Total Dose (Rad)	≥	TV Version	Temperature (°C)	Vcore (V)	Vio (V)	Mode	Exposition Time (s)	SEL	SEFI
-	i 🗖	-) 🔽	i 🗖			•		•		•	•) 💽	· -		-	i F	• •		-) 🗖			j 🗖
28	12/11/2010	27	10:49	2	11:51	82Kr22+	768	32	94	0	32.1	5.02E+05	210	2.39E+03	2.58E+02	11	2.58E+02	1	31	Room	1.5	3.3	Dyn	-	0	0
30	12/11/2010	29	10:58	3	11:58	82Kr22+	768	32	94	0	32.1	5.09E+05	226	2.25E+03	2.61E+02	11	5.19E+02	1	31	Room	1.5	3.3	Dyn	-	0	0
33	12/11/2010	32	11:10	4	12:09	82Kr22+	768	32	94	0	32.1	6.69E+05	230	2.91E+03	3.44E+02	11	8.63E+02	1	31	Room	1.5	3.3	Dyn	-	0	0
34	12/11/2010	33	11:15	5	12:14	82Kr22+	768	32	94	0	32.1	1.00E+06	256	3.91E+03	5.14E+02	11	1.38E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
37	12/11/2010	36	11:24	6	12:22	82Kr22+	768	32	94	0	32.1	1.00E+06	193	5.18E+03	5.14E+02	11	1.89E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
38	12/11/2010	37	11:29	7	12:27	82Kr22+	768	32	94	0	32.1	1.00E+06	194	5.15E+03	5.14E+02	11	2.40E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
- 39	12/11/2010	38	11:34	8	12:33	82Kr22+	768	32	94	0	32.1	1.00E+06	193	5.18E+03	5.14E+02	11	2.92E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
40	12/11/2010	39	11:40	9	12:39	82Kr22+	768	32	94	0	32.1	6.78E+05	281	2.41E+03	3.48E+02	11	3.27E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
49	12/11/2010	48	11:56	10	12:55	82Kr22+	768	32	94	0	32.1	6.00E+05	235	2.55E+03	3.08E+02	11	3.57E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
50	12/11/2010	49	12:01	11	13:00	82Kr22+	768	32	94	0	32.1	1.00E+06	380	2.63E+03	5.14E+02	11	4.09E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
65	12/11/2010	64	13:25	12	14:24	82Kr22+	768	32	94	0	32.1	6.54E+05	246	2.66E+03	3.36E+02	11	4.42E+03	2	17	Room	1.5	3.3	Dyn	-	0	0
66	12/11/2010	65	13:30	13	14:29	82Kr22+	768	32	94	0	32.1	6.52E+05	244	2.67E+03	3.35E+02	11	4.76E+03	2	17	Room	1.5	3.3	Dyn	-	0	0
67	12/11/2010	66	13:46	14	14:35	82Kr22+	768	32	94	0	32.1	6.51E+05	300	2.17E+03	3.34E+02	11	5.09E+03	2	17	Room	1.5	3.3	Dyn	-	0	0
68	12/11/2010	67	13:43	15	14:42	82Kr22+	768	32	94	0	32.1	6.45E+05	283	2.28E+03	3.31E+02	11	5.42E+03	2	17	Room	1.5	3.3	Dyn	-	0	0
70	12/11/2010	68	14:20	17	15:19	56Fe15+	523	19	97	0	18.5	8.49E+05	195	4.35E+03	2.51E+02	11	5.67E+03	2	17	Room	1.5	3.3	Dyn	-	0	0
71	12/11/2010	69	14:26	18	15:25	56Fe15+	523	19	97	0	18.5	1.12E+06	241	4.65E+03	3.32E+02	11	6.01E+03	2	17	Room	1.5	3.3	Dyn	-	0	0
72	12/11/2010	70	14:32	19	15:31	56Fe15+	523	19	97	0	18.5	1.00E+06	208	4.81E+03	2.96E+02	11	6.30E+03	2	17	Room	1.5	3.3	Dyn	-	0	0
73	12/11/2010	71	14:37	20	15:36	56Fe15+	523	19	97	0	18.5	1.00E+06	209	4.78E+03	2.96E+02	11	6.60E+03	2	17	Room	1.5	3.3	Dyn	-	0	0
75	12/11/2010	73	14:58	21	15:57	56Fe15+	523	19	97	0	18.5	1.00E+06	226	4.42E+03	2.96E+02	11	6.89E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
76	12/11/2010	74	15:04	22	16:03	56Fe15+	523	19	97	0	18.5	1.00E+06	204	4.90E+03	2.96E+02	11	7.19E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
77	12/11/2010	75	15:10	23	16:09	56Fe15+	523	19	97	0	18.5	1.00E+06	191	5.24E+03	2.96E+02	11	7.49E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
78	12/11/2010	76	15:16	24	16:14	56Fe15+	523	19	97	0	18.5	1.00E+06	238	4.20E+03	2.96E+02	11	7.78E+03	1	31	Room	1.5	3.3	Dyn	-		0
80	12/11/2010	78	15:25	25	16:24	56Fe15+	523	19	97	0	18.5	1.00E+06	194	5.15E+03	2.96E+02	11	8.08E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
84	12/11/2010	81	16:44	27	17:43	131Xe35+	1217	55	89	0	55.3	5.00E+05	464	1.08E+03	4.42E+02	11	8.52E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
86	12/11/2010	83	17:00	28	17:59	131Xe35+	1217	55	89	0	55.3	5.01E+05	473	1.06E+03	4.43E+02	11	8.96E+03	1	31	Room	1.5	3.3	Dyn	-		0
87	12/11/2010	84	17:09	29	18:08	131Xe35+	1217	55	89	0	55.3	5.00E+05	493	1.01E+03	4.42E+02	11	9.41E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
88	12/11/2010	85	17:19	30	18:18	131Xe35+	1217	55	89	0	55.3	5.00E+05	496	1.01E+03	4.42E+02	11	9.85E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
92	12/11/2010	89	17:52	31	18:50	131Xe35+	1217	55	89	0	55.3	5.01E+05	493	1.02E+03	4.43E+02	9	4.43E+02	1	31	Room	1.5	3.3	Dyn	-	0	0
93	12/11/2010	90	18:01	32	19:00	131Xe35+	1217	55	89	0	55.3	5.00E+05	482	1.04E+03	4.42E+02	9	8.86E+02	1	31	Room	1.5	3.3	Dyn	-		0
115	12/11/2010	112	20:31	33	21:30	131Xe35+	1217	55	89	0	55.3	5.00E+05	88	5.68E+03	4.42E+02	10	4.42E+02	2	17	Room	1.5	3.3	Dyn	-	0	1
116	12/11/2010	113	20:33	34	21:33	131Xe35+	1217	55	89	0	55.3	5.01E+05	381	1.31E+03	4.43E+02	10	8.86E+02	2	17	Room	1.5	3.3	Dyn	-	0	0
117	12/11/2010	114	20:43	35	21:41	131Xe35+	1217	55	89	0	55.3	5.01E+05	477	1.05E+03	4.43E+02	10	1.33E+03	2	17	Room	1.5	3.3	Dyn	-	0	0
118	12/11/2010	115	20:52	36	21:53	131Xe35+	1217	55	89	0	55.3	5.00E+05	238	2.10E+03	4.42E+02	10	1.77E+03	2	17	Room	1.5	3.3	Dyn	-	0	0
128	12/11/2010	124	22:19	38	23:17	40Ar12+	372	10	118	0	10.1	2.00E+06	216	9.26E+03	3.23E+02	16	3.23E+02	2	17	Room	1.5	3.3	Dyn	-	0	0
130	12/11/2010	126	22:24	39	23:23	40Ar12+	372	10	118	0	10.1	2.00E+06	203	9.85E+03	3.23E+02	16	6.46E+02	2	17	Room	1.5	3.3	Dyn	-	0	0
131	12/11/2010	127	22:28	40	23:27	40Ar12+	372	10	118	0	10.1	2.00E+06	188	1.06E+04	3.23E+02	16	9.70E+02	2	17	Room	1.5	3.3	Dyn	-		
135	12/11/2010		-	41	23:46	40Ar12+	372	10	118	0	10.1	1	14	7.14E-02	1.62E-04	16	9.70E+02	1	31	Room	1.5	3.3	-	-	0	0
136	12/11/2010	131	22:49	42	23:47	40Ar12+	372	10	118	0	10.1	2.00E+06	187	1.07E+04	3.23E+02	16	1.29E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
137	12/11/2010	132	22:53	43	23:51	40Ar12+	372	10	118	0	10.1	2.01E+06	193	1.04E+04	3.25E+02	16	1.62E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
138	12/11/2010	133	22:57	44	23:55	40Ar12+	372	10	118	0	10.1	2.01E+06	197	1.02E+04	3.25E+02	16	1.94E+03	1	31	Room	1.5	3.3	Dyn	-		0
139	12/11/2010	134	23:01	45	00:00	40Ar12+	372	10	118	0	10.1	2.01E+06	199	1.01E+04	3.25E+02	16	2.27E+03	1	31	Room	1.5	3.3	Dyn	-	0	
147	12/11/2010	142	23:13	46	00:12	40Ar12+	372	10	118	0	10.1	2.00E+06	214	9.35E+03	3.23E+02	16	2.59E+03	1	31	Room	1.5	3.3	Dyn	-	0	0
148	12/11/2010	143	23:18	47	00:17	40Ar12+	372	10	118	0	10.1	3.78E+06	389	9.72E+03	6.11E+02	16	3.20E+03	1P	31	Room	1.5	3.3	-	-		
155	12/11/2010	150	23:55	49	00:54	20Ne6+	186	3.6	146	0	3.6	2.01E+06	139	1.45E+04	1.16E+02	17	1.16E+02	1	31	Room	1.5	3.3	Dyn	-		
156	12/11/2010	151	23:59	50	00:57	20Ne6+	186	3.6	146	0	3.6	2.01E+06	121	1.66E+04	1.16E+02	17	2.32E+02	1	31	Room	1.5	3.3	Dyn	-	0	0
157	12/11/2010	152	00:01	51	01:00	20Ne6+	186	3.6	146	0	3.6	2.00E+06	120	1.67E+04	1.15E+02	17	3.47E+02	1	31	Room	1.5	3.3	Dyn	-	0	0
158	12/11/2010	153	00:04	52	01:03	20Ne6+	186	3.6	146	0	3.6	2.00E+06	122	1.64E+04	1.15E+02	17	4.62E+02	1	31	Room	1.5	3.3	Dyn	-		
159	12/11/2010	154	00:07	53	01:07	20Ne6+	186	3.6	146	0	3.6	2.00E+06	120	1.67E+04	1.15E+02	17	5.77E+02	1	31	Room	1.5	3.3	Dyn	-	0	
163	12/11/2010	158	00:27	54	01:26	20Ne6+	186	3.6	146	0	3.6	2.00E+06	120	1.67E+04	1.15E+02	17	6.92E+02	2	17	Room	1.5	3.3	Dyn	-	0	0
164	12/11/2010	159	00:30	55	01:29	20Ne6+	186	3.6	146	0	3.6	2.01E+06	117	1.72E+04	1.16E+02	17	8.08E+02	2	17	Room	1.5	3.3	Dyn	-		
166	12/11/2010	161	00:35	56	01:33	20Ne6+	186	3.6	146	0	3.6	2.01E+06	118	1.70E+04	1.16E+02	17	9.24E+02	2	17	Room	1.5	3.3	Dyn	-		0
167	12/11/2010	162	00:38	57	01:37	20Ne6+	186	3.6	146	0	3.6	2.13E+06	268	7.95E+03	1.23E+02	17	1.05E+03	2P	17	Room	1.5	3.3	-	-	, 0	10

13.2 SHIFTREGISTERCONDITIONSANDSEU-TABLES

									S	R - To	tal SE	U									
Line #	F (MHz)	Channel Mask (Hex)	Reading ratio	Pattern	Valide	SR 1	SR 2	SR 3	SR 4	SR 5	SR 6	SR 7	SR 8	SR 9	SR 10	SR 11	SR 12	SR 13	SR 14	SR 15	SR 16
				_						_											
28	2	3FF	4/4	A-5	1	44	46	56	41	51	48	51	34	48	39	0	0	0	0	0	0
30	50	3FF	4/4	A-5	1	53	32	43	39	47	42	42	37	35	55	0	0	0	0	0	0
33	100	355	4/4, 1/4	A-5	1	0	100	100	100	0	07	104	100	70	U 75	0	0	0	0	U	0
34	100	366	4/4	A-5	1	00	105	120	122	93	102	104	103	110	105	0	0	0	0	0	0
37	150	3FF 9EE	4/4	A-5	1	92	101	120	105	103	103	05	103	00	105	0	0	0	0	0	0
30	150	3FF	4/4	A	1	112	112	129	112	125	144	105	106	131	1/2	0	0	0	0	0	0
40	150	3FF	4/4		1	61	65	75	54	64	64	71	70	64	71	0	0	0	0	0	0
40	200	389	4/4	Δ	1	69	00	0	52	56	34	0	43	46	62	0	0	0	0	0	0
50	200	3B9	1/4	A	1	108	n	n	115	99	82	n	66	129	109	n	n	n	n	n	n
65	2	FFFF	4/4	A	1	2	2	2	50	50	50	60	0	0	0	Ō	0	0	Ō	0	0
66	50	FFFF	4/4	A	1	0	0	0	75	75	75	59	0	0	0	0	0	0	1	1	1
67	50	FFFF	1/4	A	1	1	1	1	109	109	109	84	0	0	0	0	0	0	0	0	0
68	70	FC7F	1/4	А	1	2	2	2	46	46	46	62	0	0	0	0	0	0	0	0	0
70	70	FC7F	1/4	A	1	0	0	0	49	49	49	56	0	0	0	0	0	0	0	0	0
71	50	FFFF	1/4	A	1	0	0	0	50	50	50	53	0	0	0	0	0	0	0	0	0
72	2	FFFF	1/4	A	1	0	0	0	49	49	49	40	0	0	0	0	0	0	0	0	0
73	70	FC7F	1/4	A	1	0	0	0	48	48	48	64	0	0	0	0	0	0	0	0	0
75	2	3FF	1/4	A	1	58	63	59	52	58	55	57	59	50	44	0	0	0	0	0	0
76	50	3FF	1/4	A	1	63	51	68	63	55	45	44	40	54	55	0	0	0	0	0	0
77	100	3FF	1/4	A	1	57	48	72	68	52	57	65	54	72	60	0	0	0	0	0	0
78	150	3FF	1/4	A	1	68	61	63	77	68	68	68	68	50	63	0	0	0	0	0	0
80	200	3B9	1/4	A	1	73	0	0	86	- 53	41	0	29	62	- 59	0	0	0	0	0	0
84	200	389	1/4	A	1	81	U	0	112	91	81	U	- <u>69</u>	105	/1	U	U	U	U	U	U
86	150	366	1/4	A .	1	84	83	166	88	97	98	87	8/	94	70	0	0	0	0	U	0
87	100	366	1/4	A	1	87	8/	1/8	88	59	- 11	64 0C	72	79	/3	0	0	0	0	0	0
00	50	366	1/4	AA	1	82	74	100	04	71 CO	70	70	75	01	00	0	0	0	0	0	0
92	20	3FF	1/4	A	1	63	84	102	04	88	70	73	70	75	90 64	0	0	0	0	0	0
115	2	FFFF	1/4	Δ	-1	1	1	100	19	19	19	11	00	0	04	0	0	0	0	0	0
116	2	FFFF	1/4	Δ	-1	0	0	0	89	89	89	76	0	0	0	0	0	0	0	0	0
117	50	FFFF	1/4	A	1	2	2	2	158	158	158	100	n	n	n	n	n	n	1	1	1
118	70	EC7E	1/4	A	1	n n	- 0	0	0	0	0	0	0	0	0	Ő	0	0	O	0 0	Ó
128	70	FC7F	1/4	A	1	0	0	0	48	48	48	53	0	0	0	0	0	0	0	0	0
130	50	FFFF	1/4	A	1	0	0	0	62	62	62	74	0	0	0	0	0	0	0	0	0
131	2	FFFF	1/4	A	1	0	0	0	51	51	51	46	0	0	0	0	0	0	0	0	0
135	-	-	-	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
136	2	3FF	1/4	A	1	55	58	59	53	76	71	53	52	56	57	0	0	0	0	0	0
137	50	3FF	1/4	A	1	48	59	54	57	73	69	58	53	48	67	0	0	0	0	0	0
138	100	3FF	1/4	A	1	62	60	64	70	68	68	68	47	50	69	0	0	0	0	0	0
139	150	3FF	1/4	A	1	67	58	67	67	78	79	63	63	67	72	0	0	0	0	0	0
147	200	3A1	1/4	A	1	68	0	0	447	220	64	0	66	75	66	0	0	0	0	0	0
148	-	-	-	-	1	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-
155	2	3FF	1/4	A	1	9	8	10	8	11	9	5	9	6	13	0	0	0	0	0	0
156	50	3FF	1/4	A	1	12	5	10	8	14	12	6	8	10	9	U	0	0	0	U	U
157	150	365	1/4	A	- 1	9	- /	5	20	14	14	12	12	10	13	U	0	0	U	U	U
158	150	3FF 1 D1	1/4	A .	1	16	9	/	13	15	15	21	21	12	10	U	0	0	U	U	0
109	200		1/4	A	1		0	0	0	0	0	U p	0	0	12	0	0	0	0	0	0
163	- <u>-</u>	FEC7	1/4	A	1	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0	0
166	70	E047	1/4	Δ	1	0	0	0	0	0	0	15	0	0	0	0	0	0	0	0	0
167	-	-	-	-	1	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

13.3 SHIFTREGISTERCROSS-SECTIONPERBIT-TABLE

								SR - Cross-	Section / Bi	t						
*		<u>.</u>	_	_				_	_	_	-	N	m	4	ю	(9
2	ά.	Ê	E C	Ř	α.	a a	Ω.	α.	с; с	= ~	÷.	÷	÷	÷	÷ ∼	= ~
	S S	S S	S S	S	S	S	S	S	S	5	ις Γ	ŭ	5	Ϋ́	ις Γ	ις Γ
							L L	L L		-						
	8.54E-08	8 93E-08	1.09E-07	7 96E-08	9 90 E-08	9 32E-08	9 90E-08	6.60E-08	9 32E-08	7.57E-08			Ľ	Ľ	Ľ	
30	1.01E-07	6 13E-08	8 23E-08	7.47E-08	9.00E-08	8 04E-08	8.04E-08	7.08E-08	6 70E-08	1.05E-07	-				-	-
33	-	-	0.202-00	-	-		0.042-00			1.052-07						
34	1.09E-07	1.03E-07	1 17E-07	1 19E-07	9.06E-08	8 48E-08	1.01E-07	1.00E-07	7.02E-08	7.31E-08					-	
37	8.97E-08	9.84E-08	1.23E-07	1.14E-07	1.00E-07	1.00E-07	1.00E-07	1.00E-07	1.13E-07	1.02E-07	-	-		-	-	-
38	9.55E-08	1.15E-07	1.26E-07	1.02E-07	9.26E-08	9.55E-08	8.28E-08	8.48E-08	8.58E-08	9.26E-08						
39	1.09E-07	1.09E-07	1.66E-07	1.09E-07	1.22E-07	1.40E-07	1.02E-07	1.03E-07	1.28E-07	1.38E-07	-				-	-
40	8.77E-08	9.34E-08	1.08E-07	7.76E-08	9.20E-08	9.20E-08	1.02E-07	1.01E-07	9.20E-08	1.02E-07	-	-		-	-	-
49	1.12E-07	-	-	8.45E-08	9.10E-08	5.52E-08	-	6.99E-08	7.47E-08	1.01E-07				-		-
50	1.05E-07	-	-	1.12E-07	9.65E-08	7.99E-08	-	6.43E-08	1.26E-07	1.06E-07	-	-	-	-	-	-
65	9.95E-10	9.95E-10	9.95E-10	2.49E-08	2.49E-08	2.49E-08	8.94E-08	-	-	-	-	-	-	-	-	-
66	-	-	-	3.74E-08	3.74E-08	3.74E-08	8.82E-08	-	-	-	-	-	-	4.99E-10	4.99E-10	4.99E-10
67	5.00E-10	5.00E-10	5.00E-10	5.45E-08	5.45E-08	5.45E-08	1.26E-07	-	-	-	-	-	-	-	-	-
68	1.01E-09	1.01E-09	1.01E-09	2.32E-08	2.32E-08	2.32E-08	9.37E-08	-	-	-	-	-	-	-	-	-
70	-	-	-	1.88E-08	1.88E-08	1.88E-08	6.43E-08	-	-	-	-	-	-	-	-	-
71	-	-	-	1.45E-08	1.45E-08	1.45E-08	4.61E-08	-	-	-	-	-	-	-	-	-
72	-	-	-	1.59E-08	1.59E-08	1.59E-08	3.90E-08	-	-	-	-		-	-	-	-
73	-	-	-	1.56E-08	1.56E-08	1.56E-08	6.24E-08	-	-	-	-	-	-	-	-	-
75	5.65E-08	6.14E-08	5.75E-08	5.07E-08	5.65E-08	5.36E-08	5.56E-08	5.75E-08	4.87E-08	4.29E-08	-	-	-	-	-	-
76	6.14E-08	4.97E-08	6.63E-08	6.14E-08	5.36E-08	4.39E-08	4.29E-08	3.90E-08	5.26E-08	5.36E-08	-			-	-	-
77	5.56E-08	4.68E-08	7.02E-08	6.63E-08	5.07E-08	5.56E-08	6.34E-08	5.26E-08	7.02E-08	5.85E-08	-	-	-	-	-	-
78	6.63E-08	5.95E-08	6.14E-08	7.50E-08	6.63E-08	6.63E-08	6.63E-08	6.63E-08	4.87E-08	6.14E-08	-	-	-	-	-	-
80	7.12E-08	-	-	8.38E-08	5.1/E-08	4.00E-08	-	2.83E-08	6.04E-08	5.75E-08	-	-		-	-	-
84	1.58E-07	-	-	2.18E-07	1.77E-07	1.58E-07	-	1.15E-07	2.05E-07	1.38E-07	-	-	-	-	-	-
86	1.63E-07	1.61E-07	3.23E-07	1.71E-07	1.89E-07	1.91E-07	1.69E-07	1.69E-07	1.83E-07	1.36E-07	-	-	-	-	-	-
07	1.70E-07	1.70E-07	3.47 E-07	1.72E-07	1.15E-07	1.50E-07	1.25E-07	1.40E-07	1.54E-07	1.42E-07	-	-	-	-	-	-
88	1.60E-07	1.44E-07	2.22E-07	1.73E-07	1.38E-07	1.29E-07	1.66E-07	1.42E-07	1.58E-07	1.72E-07	-	•	•	-	-	-
92	1.50E-07	1.00E-07	3.54E-07	1.03E-07	1.32E-07	1.30E-07	1.42E-07	1.40E-07	1.73E-07	1.05E-07						-
115	6.51E-07	6.61E 10	2.07 E-07	1.020-07	1.23E-07	1.30E-07	2.14E.08	1.000-07	1.401-07	1.200-07	-	-	-	-	-	-
116	0.012-10	0.012-10	0.012-10	5.78E-08	5.78E-08	5.78E-08	1.48E-07									
117	1 30E-09	1 30E-09	1 30E-09	1.03E-07	1.03E-07	1.03E-07	1.40E-07							6.49E-10	6 /9E-10	6.49E-10
118	1.302-03	1.302-03	1.302-03	1.032-07	1.030-07	1.030-07	1.000-07	-						0.451-10	0.450-10	0.450-10
128	-	-	-	7.81E-09	7.81E-09	7 81E-09	2.58E-08	-	-	-	-	-	-	-	-	-
130	-	-	-	1.01E-08	1.01E-08	1.01E-08	3.61E-08	-	-	-	-	-	-	-	-	-
131	-	-	-	8.30E-09	8.30E-09	8.30E-09	2.24E-08	-	-	-	-			-	-	-
135	-	-	-	-	-	-	-	-	-	-	-			-	-	-
136	2.68E-08	2.83E-08	2.88E-08	2.58E-08	3.70E-08	3.46E-08	2.58E-08	2.53E-08	2.73E-08	2.78E-08	-	-		-	-	-
137	2.33E-08	2.86E-08	2.62E-08	2.76E-08	3.54E-08	3.35E-08	2.81E-08	2.57E-08	2.33E-08	3.25E-08	-	-	-	-	-	-
138	3.01E-08	2.91E-08	3.10E-08	3.39E-08	3.30E-08	3.30E-08	3.30E-08	2.28E-08	2.42E-08	3.35E-08	-	-	-	-	-	-
139	3.25E-08	2.81E-08	3.25E-08	3.25E-08	3.78E-08	3.83E-08	3.05E-08	3.05E-08	3.25E-08	3.49E-08	-	-	-	-	-	-
147	3.31E-08	-	-	2.18E-07	1.07E-07	3.12E-08	-	3.22E-08	3.65E-08	3.22E-08	-	-	-	-	-	-
148	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
155	4.36E-09	3.88E-09	4.85E-09	3.88E-09	5.33E-09	4.36E-09	2.42E-09	4.36E-09	2.91E-09	6.30E-09	-	-		-	-	-
156	5.82E-09	2.42E-09	4.85E-09	3.88E-09	6.79E-09	5.82E-09	2.91E-09	3.88E-09	4.85E-09	4.36E-09	-	-	-	-	-	-
157	4.39E-09	3.41E-09	2.92E-09	9.75E-09	6.82E-09	6.82E-09	5.85E-09	5.85E-09	4.39E-09	6.34E-09	-	-	-	-	-	-
158	7.80E-09	4.39E-09	3.41E-09	6.34E-09	7.31E-09	7.31E-09	1.02E-08	1.02E-08	5.85E-09	4.39E-09	-	-	-	-	-	-
159	-	-	-	2.92E-09	-	-	-	-	-	5.85E-09	-	-	-	-	-	-
163	-	-	-	-	-	-	3.90E-09	-	-	-	-	-	-	-	-	-
164	-	-	-	-	-	-	6.33E-09	-	-	-	-	•		-	-	-
166	-	-	-	-	-	-	7.27E-09	-	-	-	-	-	-	-	-	-
167	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

13.4 CONFIGURATION-TABLE

		Configuration
Line #	Configuration step	Result
148	All	Failed Erase Operation
167	All	Verify 0 failed at row 6355

14 PIF-MARCH2011-RUNTABLES

14.1 RUN/BEAM/DUT/SEL-TABLES

	RUN							BEAN	1					DUT						
Line #	Date	Run #	Start Time	PSI Run #	PSI Start time	Energy (MeV)	Fluence (p/cm ²)	Run Duration (s)	Mean Flux (p/(cm².s))	Run Dose (Rad)	SN	Total Dose (Rad)	TV Design	TV Design Version	Temperature (°C)	Vcore (V)	Vio (V)	Mode	Exposition Time (s)	SEL
40		40	10,20		10.00	220	1.005.10	40	2.225.00	7. ACE 102	- 20	- ACE (02	10	1		1.5		Dur		
40	05/03/2011	40	19:30	1	19:23	230	1.02E+10	46	2.22E+08	5.46E+02	20	5.46E+U2	1.3	1	Room	1.5	3.3	Dyn	-	
41	05/03/2011	41	19.34	2	19.30	200	2.010+10	101	1.9900+00	1.17 E +03	20	1.72E#03	1.3	1	Room	1.5	3.3	Dyn	-	
42	05/03/2011	42	19.40	3	19.34	101	2.010+10	100	7.525.07	1.400+03	20	3.12E+03	1.3	1	Room	1.5	3.3	Dyn	-	
4.5	05/03/2011	4.0	10.40	-4 -5	10.35	75.3	2.000+10	200	5 19E±07	2.31E-03	20	4.37 E+03	1.3	1	Poom	1.5	3.3	Dyn	-	
44	05/03/2011	44	20:14	6	20:07	70.0 50.0	2.0000+10	505	3.000-07	3 10 = -03	20	1.04E±04	1.3	1	Doom	1.5	3.3	Dyn	-	
45	05/03/2011	40	20.14	7	20.07	75.3	2.0000+10	388	5.01E+07	0.12E+00 0.32E±03	20	1.040+04	1.3	1	Doom	1.5	3.3	Dyn	-	
40	05/03/2011	40	20.25	8	20.13	23.5	2.010+10	17/	1.62E±07	2.32C+03	20	1.27 E+04	1.3	1	Poom	1.5	33	Dyn	-	
47	05/03/2011	47	20.35	a	20.20	23.5	5.76E±09	366	1.62E+07	1.64E+02	20	1.53E+04	1.3	1	Room	1.5	3.3	Dyn	_	0
40	05/03/2011	40	20.45	10	20.55	23.5	4.85E±09	300	1.62E+07	1.38E±03	20	1.65E±04	1.3	1	Room	1.5	33	Dyn		0
43	03/03/2011	40	20.5r	10	20.51	23.5	1 34E+10	829	1.62E+07	1.502 105	20	1.052.104	1.0		Koom	1.5	5.5	Dyn		0
51	05/03/2011	51	21.12	11	21.07	230	1.04E+10	45	2.23E+08	5.36E+02	19	0.00E+00	13	1	Room	15	33	Dvn	-	l n
52	05/03/2011	52	21:16	12	21:09	101	1.00E+10	134	7.47E+07	9.27E+02	19	5.36E+02	1.3	1	Room	1.5	3.3	Dyn	-	n
55	05/03/2011	55	21:40	13	21:35	230	1.02E+10	45	2 26E+08	5.43E+02	19	2.01E+03	1.0	1	Room	1.5	3.3	Dvn	-	n
56	05/03/2011	56	21:45	14	21:38	230	1.00E+10	45	2 22E+08	5.34E+02	19	2.54E+03	1.1	1	Room	1.5	3.3	Dvn	-	n
58	05/03/2011	58	21:51	15	21:44	230	6.45E+10	288	2.24E+08	3.44E+03	19	5.98E+03	1.1	1	Room	1.5	3.3	Dvn	-	Ō
60	05/03/2011	60	22:05	16	21:58	230	1.75E+10	78	2.25E+08	9.36E+02	19	6.92E+03	1.1	1	Room	1.5	3.3	Dyn	-	0
61	05/03/2011	61	22:16	17	22:09	230	1.00E+11	447	2.24E+08	5.35E+03	19	1.23E+04	1.1	1	Room	1.5	3.3	Dyn	-	0
63	05/03/2011	63	22:26	18	22:19	230	2.68E+10	119	2.25E+08	1.43E+03	19	1.37E+04	1.1	1	Room	1.5	3.3	Dyn	-	0
65	05/03/2011	65	22:44	19	22:37	230	1.00E+11	450	2.22E+08	5.34E+03	19	1.90E+04	1.1	1	Room	1.5	3.3	Dyn	-	0
66	05/03/2011	66	22:54	20	22:47	230	3.76E+10	168	2.24E+08	2.01E+03	19	2.10E+04	1.1	1	Room	1.5	3.3	Dyn	-	0
68	05/03/2011	68	23:03	21	22:56	230	1.00E+11	444	2.26E+08	5.35E+03	19	2.64E+04	1.1	1	Room	1.5	3.3	Dyn	-	0
69	05/03/2011	69	23:12	22	23:05	230	1.50E+10	66	2.27E+08	7.98E+02	19	2.72E+04	1.1	1	Room	1.5	3.3	Dyn	-	0
71	05/03/2011	71	23:25	23	23:18	230	8.92E+09	39	2.29E+08	4.76E+02	19	2.77E+04	1.1	1	Room	1.5	3.3	Dyn	-	0
73	05/03/2011	73	23:31	24	23:24	230	4.21E+10	187	2.25E+08	2.25E+03	19	2.99E+04	1.1	1	Room	1.5	3.3	Dyn	-	0
76	06/03/2011	76	00:06	25	00:04	230	3.71E+10	166	2.24E+08	1.98E+03	21	1.98E+03	1.1	1	Room	1.5	3.3	Dyn	-	0
85	06/03/2011	85	00:36	26	00:29	230	1.95E+10	87	2.24E+08	1.04E+03	21	3.02E+03	1.2	1	Room	1.5	3.3	Dyn	-	0
86	06/03/2011	86	00:43	27	00:36	230	1.38E+10	62	2.22E+08	7.36E+02	21	3.76E+03	1.2	1	Room	1.5	3.3	Dyn	-	0
87	06/03/2011	87	00:45	28	00:38	230	8.86E+09	39	2.27E+08	4.73E+02	21	4.23E+03	1.2	1	Room	1.5	3.3	Dyn	-	0
88	06/03/2011	88	00:46	29	00:48	230	3.33E+09	15	2.22E+08	1.78E+02	21	4.41E+03	1.2	1	Room	1.5	3.3	Dyn	-	0

14.2 SHIFTREGISTERCONDITIONSANDSEU-TABLES

		SI	R conditior								SR	- To	tal S	EU							
Line #	F (MHz)	Channel Mask (Hex)	Reading ratio	Pattern	Valide	SR 1	SR 2	SR 3	SR 4	SR5	SR6	SR 7	SR 8	SR 9	SR 10	SR 11	SR 12	SR 13	SR 14	SR 15	SR 16
-		-		-) 🖃) 🖃) 🖃) 🖸						
40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
41	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
43	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
46	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
47	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
48	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
49	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
51	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
52	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
55	2	3FF	4/4	A		1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0
56	50	3FF	4/4	A		0	0	1	0	1	1	1	1	0	0	0	0	0	0	0	0
58	100	FF	4/4	A		2	2	2	2	2	2	2	2	0	0	0	0	0	0	0	0
60	200	1	4/4	A		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
61	200	1	4/4	A		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
63	150	35F	4/4	A		0	0	2	1	1	1	2	0	2	1	0	0	0	0	0	0
65	150	35F	4/4	A		2	1	2	2	2	0	2	0	2	2	0	0	0	0	0	0
66	50	3FF	4/4	A		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
68	50	3FF	4/4	A		2	2	2	2	2	2	2	2	2	2	0	0	0	0	0	0
69	2	3FF	4/4	A		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
71	2	3FF	4/4	A		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
73	2	3FF	4/4	A		0	1	0	1	0	0	1	1	0	1	0	0	0	0	0	0
76	100	3FF	4/4	A		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
85	190	3000	4/4	A		0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
86	190	3000	4/4	A		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
87	190	3000	4/4	A		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
88	190	3C00	4/4	A		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

14.3 SHIFTREGISTERCROSS-SECTIONPERBIT-TABLES

								SR - Cross-	Section / Bit							
Line #	SR 1	SR 2	SR 3	SR 4	SR 5	SR 6	SR 7	SR 8	8 SK 9	SR 10	SR 11	SR 12	SR 13	SR 14	SR 15	SR 16
F		F	- -	F	F	F	- -	- -	- -	- -	F	F	F		F	
40	i	-	-	-	-	-	-	-	-	-		-	-	-	-	-
41	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
43	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
46	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
47	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
48	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
49	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
51	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
52	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
55	9.57E-14	-	-	9.57E-14	9.57E-14	-	-	-	9.57E-14	9.57E-14	-	-	-	-	-	-
56	-	-	9.75E-14	-	9.75E-14	9.75E-14	9.75E-14	9.75E-14	-	-	-	-	-	-	-	-
58	3.02E-14	-	-	-	-	-	-	-	-							
60	5.56E-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
61	1.95E-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
63	-	-	7.27E-14	3.64E-14	3.64E-14	3.64E-14	7.27E-14	-	7.27E-14	3.64E-14	-	-	-	-	-	-
65	1.95E-14	9.74E-15	1.95E-14	1.95E-14	1.95E-14	-	1.95E-14	-	1.95E-14	1.95E-14	-	-	-	-	-	-
66	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
68	1.95E-14	1.95E-14	1.95E-14	-	-	-	-	-	-							
69	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
71	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
73	-	2.31E-14	-	2.31E-14	-	-	2.31E-14	2.31E-14	-	2.31E-14	-	-	-	-	-	-
76	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
85	-	-	-	-	-	-	-	-	-	-	-	4.98E-14	-	4.98E-14	-	-
86	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
87	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
88	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-

14.4 SRAM/UFROM-TABLES

	SRAM U									UFF	NO§										
				SRAM co	onditions			F	ill Ern	or Typ	pe	Che	eck E	Error T	үре						
Line #	F (MHz)	Start Address	Stop Address	Mask (Dec)	# Bit Eff	Pattern	Valide	4	m	2	~	4	m	2	~	scu	MCU	SEU	:ross-Section/Bit (cm²)	F (MHz)	SEU
•	i 🗖	•			-		-	Ī) 🔽	•) 🔽	i 🖵) 🔽		-	i 🖃	-	-	1 7 🗖		-
40	20	0	6FFF	511	516096	CKB /CKB	1	0	0	0	0	0	0	409	0	408	8	416	7.887E-14	10	0
41	20	0	6FFF	511	516096	CKB /CKB	1	0	0	0	0	0	0	737	0	727	34	761	7.32141E-14	10	0
42	20	0	6FFF	511	516096	CKB /CKB	1	0	0	0	0	0	0	603	0	602	2	604	5.82541E-14	10	0
43	20	0	6FFF	511	516096	CKB /CKB	1	0	0	0	0	0	0	676	0	676	0	676	6.54917E-14	10	0
44	20	0	6FFF	511	516096	CKB /CKB	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0
45	20	0	6FFF	511	516096	CKB /CKB	1	0	0	0	0	0	0	844	0	844	0	844	8.1686E-14	10	0
46	20	0	6FFF	511	516096	CKB /CKB	1	0	0	0	0	0	0	707	0	707	0	707	6.83242E-14	10	0
47	20	0	6FFF	511	516096	CKB /CKB	1	0	0	0	0	0	0	41	0	41	0	41	2.81512E-14	10	0
48	20	0	6FFF	511	516096	CKB /CKB	1	0	0	0	0	0	0	144	0	144	0	144	4.84743E-14	10	0
49	20	0	6FFF	511	516096	CKB /CKB	1	0	0	0	0	0	0	138	0	138	0	138	5.5121E-14	10	0
					516096			0	0	0	l o	0	O	323	0	323	0	323	4.66046E-14		
51	20	0	6FFF	511	516096	CKB /CKB	1	0	0	0	0	0	0	389	0	389	0	389	7.51481E-14	10	0
52	20	0	6FFF	511	516096	CKB /CKB	1	0	0	0	0	0	0	312	0	312	0	312	6.03935E-14	10	0
55	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
56	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
58	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
61	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
63	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
65	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
66	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
69	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
71	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
73	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
76	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
85	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
86	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
87	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
88	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

15 AcronymsandAbbreviations

CCC:	ClockConditioningCircuit
	DoubleDateBate
	DoubleDataRate I: DoubleDataRate(version2)SynchronousDynamic RandomAccessMemory
DUT	DeviceUnderTest
EDAC:	ErrorDetectionAndCorrection
FF:	FlashFreeze
FPGA:	FieldProgrammableGateArray
FROM:	FlashReadOnlyMemory
HI:	Heavylon
ISP:	InSystemProgramming
LVCMOS:	LowVoltageCMOS
LVDS:	LowVoltageDifferentialSignaling.
MBU:	Multi-BitUpset
MCU:	Multi-CellUpset
UFROM:	UserFROM
PLL:	Phase-lockedLoop
ROM:	ReadOnlyMemory
SBU:	SingleBitUpset
SCU:	SingleCellUpset
SDR:	SingleDataRate
SEB:	Single-EventBurnout
SEE:	Single-EventEffect
SEFI:	Single-EventFunctionalInterrupt
SEGR:	Single-EventGateRupture
SEL:	Single-EventLaton-up
	Single-Event Indisient
	Single-Eventopset
SFI. CDAM	Static Pondom Accoss Momony
	ripicitioudicitoudilug