

DOCUMENT

RA0598 Proton Irradiation Test Results on Micropac Part Types 66191-313 and 66226-001

DISCLAIMER This test report is provided as a courtesy to the receiver, shall neither imply, nor be construed as constituting, any kind of legal contractual relationship between the European Space Agency and the receiver. The receiver may reproduce the test report only in its entirety. Reproduction of parts of the test summary is subject to the receiver obtaining prior approval by the laboratory. The European Space Agency does not assume any liability, including but not limited to liability for any damage derived from the use of the test results and the test report.

Prepared byAlessandra CostantinoIssue1Revision1Date of Issue30/05/2012StatusAuthorizedDocument TypeTest ReportDistributionExternal

APPROVAL

Title Proton Irradiation Test Results on Micro	pac Part Types 66191-313 and 66226-001
Issue 1	Revision 1
Author Alessandra Costantino	Date 30/05/2012
Reviewed by Véronique Ferlet-Cavrois	Date
Approved by Stephan Hernandez	Date
Authorized by Ali Zadeh	Date

CHANGE LOG

Reason for change	Issue	Revision	Date
Added Par.5 :"CTR degradation as function of	1	1	30/05/2012
Displacement Damage Dose"			

CHANGE RECORD

Issue 1	Revision 1					
Reason for change	Date	Pages	Paragraph(s)			
Analysis of CTR degradation as function of	30/05/2012	27-29	5			
Displacement Damage Dose						

Table of contents:

1	INTRODUCTION	4
1.1	Background	4
1.2	Devices under test	4
1.3	Energy and fluence	4
2	IRRADIATION OUTLINE	5
2.1	Biasing conditions	5
2.2	DUT distribution	5
3	ELECTRICAL PARAMETERS TESTED	6
4	TEST RESULTS	7
4.1	Emitter stage	7
4.1.1	Reverse Current drifts	7
4.2	Receiver stage:	9
4.2.1	Collector base dark current drifts	9
4.2.2	Collector Emitter dark current drifts	11
4.2.3	Collector Emitter dark current drifts	13
4.3	Overall optocoupler performances	15
4.3.1	Collector Emitter Saturation Voltage Drift	16
4.3.2	2 Initial CTR measurement	18
4.3.3	CTR drifts	19
4.3.4	Normalized CTR drifts	23
5	CTR DEGRADATION AS A FUCTION OF DISPLACEMENT DAMAGE DOSE	27
6	CONCLUSIONS	30

1 INTRODUCTION

1.1 Background

Micropac optocouplers that employ a 2N2222 transistor as amplifier stage are subjected to a transistor die change: the former transistor used, produced by Microsemi, is being replaced by a Micropac in-house produced transistor.

A TID radiation test performed at ESTEC on both old and new versions of reference 66191 (66191-303 and 66191-313) revealed that the 66191-313 devices are more sensitive to low dose rate TID irradiation than 66191-303. The TID test report (RA0585) can be found on the ESA Internal Problem Notification website (ref. IPN #242) and in the Radiation Database on ESCIES website. Other Micropac references with similar configuration are now using the NPN Micropac transistor: 66191, 66189, 66223, 66225, 66226, 66179, 66099/300. The updated list of devices can be retrieved on IPN#242.

This proton irradiation test was performed to assess the damage caused by radiation on samples from references 66191-313 and 66226-001 employing the Micropac in-house manufactured transistor.

1.2 Devices under test

The part types under test are 66191–313 and 66226-001. These references have the same electrical layout (Fig. 1) consisting of a LED coupled to a photodiode and a 2N2222 transistor.

Both part types employ a 2N2222 transistor manufactured in-house by Micropac, but have different LEDs with the wavelength of 660 nm for 66191 and 850 nm for 66226.

Fig. 1: The electrical layout is the same for both 66191 and 66226 part types.

1.3 Energy and fluence

Proton irradiation was performed on 18^{th} and 19^{th} of January 2012 at AGORFIRM cyclotron in KVI-Groningen.

Three proton energies were selected: 28 MeV, 60 MeV and 184 MeV.

A flux of 2E+8 p/cm² was used for the irradiations. Intermediate electrical characterization have been performed at increasing proton fluence levels as reported in Table 1.

fluonoo otono		Energ	y
nuence steps	28MeV	60MeV	184MeV
1.00E+10	7		
3.00E+10	7	~	~
7.00E+10	~	~	~
2.00E+11	~	~	~
4.00E+11			✓ (only #24 of 66191-313)
6.00E+11	~	~	V

Table 1: Irradiation history for each board, irradiation flux=2E+8 p/(s*cm²).

Page 4/30 ESA Standard Document Date 29/05/2012 Issue 1 Rev 1

2 IRRADIATION OUTLINE

2.1 Biasing conditions

During the proton irradiation the samples were unbiased with all pins grounded, this was the worst biasing condition that we identified in previous irradiation testing on optocouplers.

2.2 DUT distribution

A summary of the irradiation history is reported in the following tables:

Reference: 66191-313 D/C 1031

Biasing	Fluence steps	Energy	DUT S/N	Sample Sizo
Contaition				Size
Unbiased:	3.00E+10	184MeV	#19, #20, #21,	9
	7.00E+10		#22, #23, #24,	
All pins	2.00E+11		#25, #26, #27	
grounded	4.70E+11 (sample#24)			
	6.00E+11			
	3.00E+10	60 MeV	#10, #11, #12,	9
	7.00E+10		#13, #15, #16,	
	2.00E+11		#17, #18, #28	
	6.00E+11			
	1.00E+10	28 MeV	#01, #02, #03,	9
	3.00E+10		#04, #05, #06,	
	7.00E+10		#07, #08, #09	
	2.00E+11			
	6.00E+11			

 Table 2: Summary of the irradiation history for the optocouplers 66191-313
 DC1031

Reference: 66226-001 D/C 1112

Biasing	Fluence steps	Energy	DUT S/N	Sample
condition				Size
Unbiased:	3.00E+10	184MeV	#13, #15, #16,	6
	7.00E+10		#17, #18, #28	
All pins	2.00E+11			
grounded	6.00E+11			
-	3.00E+10	60 MeV	#07, #08, #09,	6
	7.00E+10		#10, #11, #12,	
	2.00E+11			
	6.00E+11			
	1.00E+10	28 MeV	#01, #02, #03,	6
	3.00E+10		#04, #05, #06	
	7.00E+10			
	2.00E+11			
	6.00E+11			

 Table 3: Summary of the irradiation history for the optocouplers
 66226-001 DC1112

3 ELECTRICAL PARAMETERS TESTED

Electrical measurement reported in Table 4 were performed as initial characterization and after each fluence step (ref. Table 2 and Table 3).

All listed parameters were measured using an Agilent4156C and a text fixture Agilent 16442A. The optocoupler, that have an LCC package, were soldered on 8-pin DIL Winslow adapters. The measuring sequence was controlled by the Wavewue (Microvue) software.

Tested	N			Units	Liı	mits	
part	Nr.	Description	Parameter		Min	max	Test Condition
Emitter	1	Input Diode Static	Ir	pА	-	100	Vr=3V
		Reverse Current				nA	
Receiver	2	Collector Base Dark	IcbOff	pА		100	Vcb=40V
		Current		_		uA	
Receiver	3	Collector Emitter	IceOff	pА	-	1 mA	Vce=40V
		Dark Current		_			
Receiver	4	Collector Emitter	IceOff	pА	-	100	Vce=20V
		dark current				nA	
OC	5	Collector Emitter	Vce _{SAT}	V	-	0.3	If =20mA,
		Saturation Voltage					Ic=10mA
OC	6	On State Collector	Ic	mA	1	-	Vce=1V,
		Current					If=10mA
OC	7	On State Collector	Ic	mA	-	-	Vce=1V,
		Current -					If=0.1-40mA
		characteristic					

The CTR is the parameter generally used to characterize the static efficiency of an optocoupler, it is defined by the ratio of the On State Collector Current (I_c) to the corresponding LED current (I_F).:

$$CTR = \frac{I_C}{I_F}$$

This parameter is included in the results.

4 TEST RESULTS

4.1 Emitter stage

The initial LED reverse current was the parameter tested on the emitter side.

The reverse current of 66191-313 is on average half that of the 66226-001 (respectively 1pA and 2pA).

Fig. 2 illustrate that the 66226-001 is more proton radiation sensitive than the 66191-313: the final reverse current of 66226-001 is approximately two orders of magnitude higher than the 66191-313.

Two DUTs, one for each part type (#04 for 66191 and #07 for 66226), have a high initial reverse current (200pA and 1000pA). In contrast to the other samples these two are not affected by irradiation.

No correlation was found between the high initial leakage current of these two samples with their CTR performances.

4.1.1 Reverse Current drifts

Manufacturer specification: Ir $_{MAX} = 10 \mu A$.

Fig. 2: LED reverse current drift. The points represent the measured data for each sample, and the line shows the trend of the average for each part type.

Page 7/30 ESA Standard Document Date 29/05/2012 Issue 1 Rev 1

Ir (pA)

ſ

				1	Flue	nce (p/cm2)		1	
			1e+9	1e+10	3e+10	7e+10	2e+11	4.7e+11	6e+11
			У	У	У	У	У	У	1
Part type	Proton Energy (MeV)	SN	Mean	Mean	Mean	Mean	Mean	Mean	Mean
66191-313	28	#01	-0.83	-0.68	-0.47	-0.81	-1.29		-0.87
		#02	-0.86	-1.17	-1.31	-0.59	-1.45		-1.83
		#03	-0.92	-0.81	-0.87	-0.87	-0.92		-1.08
		#04	-219.55	-212.50	-209.60	-233.10	-205.90		-201.40
		#05	-0.88	-0.69	-0.72	-0.95	-1.27		-1.11
		#06	-1.38	-0.89	-0.99	-0.90	-1.28		-1.47
		#07	-0.84	-0.80	-0.77	-0.73	-1.17		-1.49
		#08	-1.11	-0.72	-0.76	-0.84	-0.83		-0.67
		#09	-0.91	-0.79	-0.71	-0.78	-0.72		-1.00
	60	#10	-0.82		-0.89	-0.75	-1.18		-0.42
		#11	-0.81	•	-0.56	-0.76	-0.78	•	-1.14
		#12	-0.92	-	-0.77	-0.90	-0.87	•	-0.87
		#13	-1.11		-0.59	-0.74	-0.93	•	-0.80
		#15	-0.91		-0.84	-0.78	-0.85	•	-0.49
		#16	-0.89		-0.32	-0.83	-1.45		-1.03
		#17	-1.17		-0.55	-0.70	-1.40		-1.51
		#18	-0.84		-0.32	-0.53	-0.76	•	-0.38
		#28	-0.84		0.07	-0.81	-0.92		-0.43
	184	#19	-1.02			-1.34	-1.00		-0.83
		#20	-0.96		-0.67	-1.04	-1.27		-0.72
		#21	-0.75		-0.72	-0.78	-0.78		-0.78
		#22	-0.83		-0.55	-1.41	-0.99		-0.91
		#23	-0.97	•	-0.60	-0.97	-1.12	•	-0.68
		#24	-0.82		-0.83	-1.31		-0.58	
		#25	-1.03		-0.99	-1.35	-1.06	•	-0.88
		#26	-0.87		-0.68	-0.79	-1.07		-0.30
		#27	-1.06		-0.38	-0.84	-1.09	•	-1.36
66226-001	28	#01	-0.73	-4.77	-9.70	-12.53	-37.15		-106.50
		#02	-0.87	-6.39	-8.79	-19.48	-42.77		-101.40
		#03	-2.59	-4.16	-8.35	-11.45	-33.82		-99.62
		#04	-1.91	-9.54	-7.17	-10.91	-25.48		-77.49
		#05	-11.94	-11.74	-17.49	-19.26	-41.93		-114.90
		#06	-0.79	-2.03	-5.92	-13.83	-28.37		-104.90
	60	#07	-991.60		-1201.00	-974.10	-1123.00		-1046.00
		#08	-2.26		-8.22	-16.35	-38.08	•	-105.90
		#09	-1.77		-9.58	-19.02	-35.61		-90.57
		#10	-0.98		-12.03	-17.01	-35.81	•	-110.00
		#11	-1.34		-6.99	-14.42	-32.54		-82.48
		#12	-1.27		-7.70	-14.21	-43.37		-107.70
	184	#13	-1.08		-6.42	-8.21	-23.18		-54.29
		#14	-23.52		-27.69	-33.16	-47.91		-83.22
		#15	-1.33		-8.62	-13.23	-29.13		-64.62
		#16	-2.51		-6.32	-10.03	-26.28		-88.54
		#17	-0.78		-5.42	-7.41	-20.66		-73.64
		#18	-1.01		-3.23	-7.26	-26.84		-71.19

 Table 5: LED reverse current at increasing fluence for each tested device.

4.2 **Receiver stage:**

Dark current measurements were performed on the photodiode receiver stage. All initial and intermediate data are compliant with the manufacturer specification except for one sample of part type 66191-313 (#17) which after a fluence of $2E+11 \text{ p/cm}^2$ has a Collector Emitter Dark Current above the manufacturer maximum rated dark current.

Even if compliant with manufacturer specifications, 6 of the 28 samples tested of part type 66191-313 showed high post irradiation dark current levels. Up to 2 orders of magnitude over the average (eg. IcbOFF@40V is above 1E+5pA, compared to an average of 1E+3pA). A screening could identify these samples, whose dark currents are the most affected by radiation, as their initial dark current is over the double of 66191-313 mean dark currents.

For the 6 samples mentioned above, no correlation was found between the high current leakages and CTR performances.

4.2.1 Collector base dark current drifts

Fig. 3: Collector-base dark current drift. The points represent the measured data, and the line shows the trend of the average for each part type.

					F	luence (p/cn	12)		
			1e+9	1e+10	3e+10	7e+10	2e+11	4.7e+11	6e+11
			У	У	У	У	У	У	۲
Part type	Proton Energy (MeV)	SN	Mean	Mean	Mean	Mean	Mean	Mean	Mean
66191-313	28	#01	64	64	137	283	764		5064
		#02	62	59	126	259	678		1881
		#03	60	55	111	234	593		1591
		#04	63	59	128	258	683		1730
		#05	63	56	116	244	592		1623
		#06	64	66	206	4626	71830		341000
		#07	60	58	125	247	634	•	1549
		#08	59	58	127	257	678	•	1761
		#09	56	54	114	233	601		1674
	60	#10	58		83	209	5824	•	135400
		#11	63		80	181	508		1298
		#12	57		79	162	467	•	1188
		#13	58		80	175	525		1307
		#15	56		77	176	488	•	1270
		#16	57		76	175	495		1265
		#17	252		34780	245300	744300		2015000
		#18	62		85	190	542	•	1543
		#28	80		91	181	497	•	1184
	184	#19	62		•	121	273	•	674
		#20	65		66	114	261		608
		#21	67		73	125	280		666
		#22	59		62	113	257		626
		#23	205		8441	65480	476100		466300
		#24	90		726	5824		114800	
		#25	64		74	123	269		708
		#26	140		4533	58210	148200		381000
		#27	64		66	118	262	•	618
66226-001	28	#01	42	45	112	247	667	•	1969
		#02	40	48	119	261	704		1839
		#03	38	42	108	234	577	•	1771
		#04	40	46	117	249	629		1868
		#05	41	42	102	214	536	•	1422
		#06	40	43	111	249	650		1847
	60	#07	39		70	183	556	•	1434
		#08	45		73	180	549		1350
		#09	37		67	230	525		1361
		#10	43		68	170	508		1345
		#11	47		76	181	546		1334
		#12	39		69	193	560		1459
	184	#13	44		58	115	289		752
		#14	45		55	103	250		625
		#15	56		61	106	241		642
		#16	59		70	126	291		1134
		#17	40		55	107	277		821
		#18	43		56	113	283		795

Table 6: Collector-base dark current at increasing fluence for each tested device.

Page 10/30 ESA Standard Document Date 29/05/2012 Issue 1 Rev 1

4.2.2 Collector Emitter dark current drifts

Fig. 4: Collector-emitter dark current at increasing fluence for each tested device. The points represent the measured data, and the line shows the trend of the average for each part type.

						Fluence (p/cm	2)		
			1e+9	1e+10	3e+10	7e+10	2e+11	4.7e+11	6e+11
			У	У	У	у	У	У	3
Part type	Proton Energy (MeV)	SN	Mean	Mean	Mean	Mean	Mean	Mean	Mean
66191-313	28	#01	1044	1073	1343	1327	1044		5078
		#02	164	195	386	608	827		1905
		#03	154	177	385	651	791		1610
		#04	1222	1119	1372	1514	985		1749
		#05	116	122	270	465	682		1653
		#06	1012	1103	2557	68780	379500		533300
		#07	918	821	950	879	756		1576
		#08	89	103	245	501	850		1782
		#09	100	119	265	497	731		1690
	60	#10	70		104	270	12050		238800
		#11	107		183	379	786		1344
		#12	77		130	264	656		1225
		#13	466		860	1133	1130	•	1346
		#15	372		476	566	678		1294
		#16	812		1002	1236	978		1299
		#17	7221		1999000	12380000	18870000		10780000
		#18	357		530	629	760		1584
		#28	95		109	215	605		1213
	184	#19	884			1313	1229		837
		#20	81		83	142	354		712
		#21	1100		1237	1409	1322		852
		#22	216		325	579	863		799
		#23	815		176000	1823000	11500000		2662000
		#24	1503		22270	189400		841300	
		#25	842		1152	1241	660		887
		#26	2039		158900	2729000	3880000		2526000
		#27	126		185	348	620		745
66226-001	28	#01	64	72	135	266	673		1983
		#02	153	171	220	335	723		1844
		#03	53	61	131	252	581		1793
		#04	48	51	118	251	630		1881
		#05	97	138	202	287	560		1431
		#06	58	67	144	275	663		1853
	60	#07	69		134	242	586		1448
		#08	56		85	186	559		1354
		#09	49		84	262	535		1371
		#10	53		85	197	530		1368
		#11	83		117	210	565		1343
		#12	169		457	595	731		1501
	184	#13	55		69	122	294		759
		#14	65		80	128	264		638
		#15	429		514	522	453		698
		#16	109		124	179	325		1258
		#17	56		81	130	292		849
		#19	142		254	420	E00		0.40

 Table 7: Collector-emitter dark current (Vce=40V) at increasing fluence for each tested device.

4.2.3 Collector Emitter dark current drifts

Manufacturer specification: $IceOFF_{MAX} = 100 \text{ nA}$

Fluence (p/cm2)

Fig. 5: Collector-emitter dark current drift. The points represent the measured data, and the line shows the trend of the average for each part type.

Page 13/30 ESA Standard Document Date 29/05/2012 Issue 1 Rev 1

			Fluence (p/cm2)							
			1e+9	1e+10	3e+10	7e+10	2e+11	4.7e+11	6e+11	
			У	У	У	У	У	У		
Part type	Proton Energy (MeV)	SN	Mean	Mean	Mean	Mean	Mean	Mean	Mean	
66191-313	28	#01	701	694	864	825	517		1521	
		#02	107	126	247	396	432		1121	
		#03	99	110	241	418	401		930	
		#04	866	726	885	939	500		1086	
		#05	77	81	172	311	358		972	
		#06	717	709	919	1403	6820		20070	
		#07	654	556	633	595	384		974	
		#08	58	68	161	332	443		1097	
		#09	67	78	171	328	377		955	
	60	#10	45		70	149	466		4706	
		#11	73		120	248	393		702	
		#12	50		91	175	364		676	
		#13	304	•	560	729	561		703	
		#15	262		320	382	354		685	
		#16	571		657	807	485		683	
		#17	679		4408	76230	284100		153900	
		#18	251	•	355	416	408		870	
		#28	58		72	145	343		671	
	184	#19	615	•		879	835		441	
		#20	53		59	99	245		397	
		#21	787	•	835	932	892		409	
		#22	144		211	375	571		427	
		#23	100		262	1291	43070		27550	
		#24	652		1031	2149		15450		
		#25	604		808	843	438		467	
		#26	521		812	5144	32970		36990	
		#27	83		122	225	405		411	
66226-001	28	#01	31	48	93	188	387		1116	
		#02	55	113	149	235	403		1103	
		#03	27	39	92	180	334		1017	
		#04	27	36	86	185	354	•	1040	
		#05	30	86	138	156	290		749	
		#06	28	45	99	194	384	•	1045	
	60	#07	29		90	171	331		805	
		#08	30		57	129	314	•	754	
		#09	27		60	202	304		752	
		#10	28		54	133	374		828	
		#11	42		77	146	340		755	
		#12	31		298	403	402	•	838	
	184	#13	30		49	86	210		428	
		#14	33		54	89	157		34	
		#15	101		295	328	308		360	
		#16	57		78	119	216		778	
		#17	28		56	92	213		50	
		#18	32		230	285	338		49	

Table 8: Collector-emitter dark current (Vce=20V) at increasing fluence for each tested device.

4.3 Overall optocoupler performances

Two parameters were observed to characterize the overall optocouplers performances: the Collector Emitter Saturation Voltage and the CTR.

The VceSAT initial measurement of DUT#28 of 66191-313 was out of specification (0.432V instead of the limit of 0.3V). All the tested devices show an increasing VceSAT with increasing proton fluence, and several devices from both part types experience a drift of VceSAT to values higher than manufacturer specification, and at the last irradiation step the collector-emitter saturation voltage was over the compliance of 40 V set for the measurement (Table 9).

The CTR characterises the static efficiency of an the optocoupler, it is defined by the ratio of the photocurrent I_c corresponding to the LED current I_F :

$$CTR = \frac{I_c}{I_f}$$

The pre-irradiation CTR characteristic is reported in Par. 4.3.2. Different CTR performances and a different part to part uniformity can be observed on the two part types. For comparison purposes the analyses in Par 4.3.3 and Par.4.3.4 refer to the same bias condition

(CTR @ I_{LED} =10mA and V_{CE} =1V) of the manufacturer datasheet. At this measuring point the manufacturer specification indicates a minimum rated CTR of 1.

Par. 4.3.3 contains the data of CTR degradation from proton irradiation, Par. 4.3.4 the normalized CTR showing the relative degradation from the initial measurements.

4.3.1 Collector Emitter Saturation Voltage Drift

Manufacturer specification: $VceSAT_{MAX} < 0.3V$

Fluence (p/cm2)

Fig. 6: Collector Emitter Saturation Voltage drift. The points represent the measured data, and the line shows the trend of the average for each part type. The orange dashed line indicates the manufacturer specification limit.

			Fluence (p/cm2)						
			1e+9	1e+10	3e+10	7e+10	2e+11	4.7e+11	6e+11
			У	У	У	у	У	у	
Part type	Proton Energy (MeV)	SN	Mean	Mean	Mean	Mean	Mean	Mean	Mear
66191-313	28	#01	0.4327	0.3322	0.2392	0.271	0.4394		>'
		#02	0.2133	0.2071	0.259	0.3519	0.3435		>'
		#03	0.2056	0.2014	0.2331	0.2431	0.3342		>
		#04	0.2217	0.2358	0.2408	0.5428	0.3416		>
		#05	0.1975	0.2	0.2212	0.2411	0.3682		>
		#06	0.2176	0.2179	0.233	0.2565	0.3564		>
		#07	0.2246	0.2384	0.2367	0.2496	0.338		>
		#08	0.1957	0.22	0.3125	0.2414	0.3683		>
		#09	0.196	0.1958	0.2257	0.2491	0.3973		>
	60	#10	0.199		0.2065	0.3923	0.3354		>
		#11	0.2243		0.2234	0.2572	0.2972		>
		#12	0.2109		0.2024	0.2178	0.3135		>
		#13	0.2152		0.2178	0.243	0.2966		>
		#15	0.2047		0.2142	0.3272	0.2867		>
		#16	0.2214		0.2226	0.3201	0.2898		>
		#17	0.2148		0.2128	0.2385	0.2946		>
		#18	0.2153		0.3017	0.2414	0.3078		>
		#28	0.2152		0.214	0.237	0.3017		
	184	#19	0.2441			0.2351	0.3355		4.15
		#20	0.211		0.2461	0.2311	0.2849		6.70
		#21	0.2429		0.2241	0.2347	0.2611		0.446
		#22	0.2149		0.2248	0.2303	0.265		0.55
		#23	0.1857		0.1951	0.2068	0.2329		0.439
		#24	0.2054		0.2129	0.2234		0.3362	
		#25	0.2133		0.2178	0.2588	0.2404		0.405
		#26	0.1992		0.2112	0.2224	0.2771		0.380
		#27	0.2009		0.2024	0.2205	0.3568		0.38
66226-001	28	#01	0.1711	0.1921	0.3845	0.2714	0.3038		0.416
		#02	0.1538	0.1571	0.3177	0.2147	0.2924		0.293
		#03	0.1714	0.1647	0.1755	0.2102	0.2249		0.270
		#04	0.178	0.1744	0.1833	0.1998	0.2387		0.347
		#05	0.1965	0.2486	0.2265	0.4382	0.2314		0.338
		#06	0.1551	0.2976	0.1662	0.2377	0.2593		0.270
	60	#07	0.1855		0.1858	0.204	0.2153		0.298
		#08	0.1883		0.1791	0.2211	0.2741		0.255
		#09	0.1793		0.1995	0.1849	0.2085		0.260
		#10	0.1677		0.1619	0.1976	0.1898		0.285
		#11	0.1439		0.1498	0.1815	0.3666		0.242
		#12	0.1776		0.226	0.1743	0.2379		0.292
	184	#13	0.2095		0.1987	0.2006	0.2154		0.253
		#14	0.1786		0.1887	0.1869	0.2592		0,237
		#15	0.2281		0.2145	0.2201	0.2342		0.445
		#16	0.1781		0.1805	0.1887	0.2067		0.226
		#17	0.1727		0.1664	0,202	0.3064		0,211
		#40	0.4007		0.4000	0.0070	0.0005		0.220

 Table 9: Collector emitter saturation voltage at increasing fluence for each tested device

4.3.2 **Initial CTR measurement**

The initial CTR characteristic of each DUT, is measured on a sweep of forward current (If=0.1 to 40mA), with a fix polarisation between collector and emitter (V_{CE} =1V).

3 4 5 6 7 8 10

2

20

Page 18/30 ESA Standard Document Date 29/05/2012 Issue 1 Rev 1

0.2 0.3

0.5 0.7 1

2 3 4 5 6 7 10

20 : 0 1

If (mA)

0.2 0.3

0.5 0.7 1

2

4.3.3 CTR drifts

Manufacturer specification: minimum of CTR=1 @ I_{LED}=10mA and V_{CE}=1V.

Fig. 9: Drift of average $CTR_{DS} @ I_{LED} = 10$ mA and $V_{CE} = 1V$ for 27, 60 and 184 MeV of proton beam energy. The points are the measured data, the lines show the trend of the average for each part type, the error bars the standard deviation.

The red line at CTR=1 is the value indicated in the manufacturer's datasheets as CTR minimum rating.

G SG		esa
-------------	--	-----

CTRDD@	If=10mA, Vce=1V		4.0				.,	20111 470.44	
			1e+9	1e+10	3e+10	7e+10	2e+11	4.7e+11	6e+11
			у	у	у	у	у	У	
Part type	Proton Energy (MeV)	SN	Mean	Mean	Mean	Mean	Mean	Mean	Mean
66191-313	28	#01	2.625	2.179	1.719	1.247	0.572		0.074
		#02	2.305	1.928	1.518	1.101	0.499		0.065
		#03	2.206	1.875	1.486	1.079	0.494		0.068
		#04	2.495	2.118	1.679	1.209	0.549		0.073
		#05	2.050	1.752	1.381	0.989	0.425		0.063
		#06	2.388	2.016	1.569	1.110	0.486		0.062
		#07	2.846	2.476	1.968	1.377	0.580		0.077
		#08	2.145	1.820	1.431	1.027	0.453		0.052
		#09	2.138	1.818	1.458	1.057	0.469		0.055
	60	#10	1.887		1.481	1.125	0.610		0.149
		#11	2.519		1.993	1.506	0.805		0.180
		#12	1.888		1.493	1.133	0.603		0.129
		#13	2.401		1.877	1.390	0.730		0.148
		#15	2.574		1.993	1.450	0.724		0.131
		#16	2.574		2.035	1.519	0.789		0.156
		#17	2.802		2.232	1.641	0.837		0.167
		#18	2.381		1.834	1.341	0.694		0.144
		#28	1.807		1.429	1.089	0.574		0.113
	184	#19	2.163		1.820	1.514	0.969		0.355
		#20	1.829		1.539	1.315	0.886		0.360
		#21	2.420		2.085	1.778	1.176		0.482
		#22	2.161		1.798	1.516	0.986		0.387
		#23	2.248		1.861	1.547	0.978		0.375
		#24	2.433		2.041	1.715		0.580	
		#25	2.695		2.246	1.878	1.209		0.437
		#26	2.472		2.072	1.752	1.155		0.459
		#27	2.620		2.190	1.837	1.224		0.462
66226-001	28	#01	4.948	4.459	3.715	3.195	1.818		0.650
		#02	5.593	5.287	4.439	3.701	2.411		0.824
		#03	4.643	4.370	3.854	2.967	1.697		0.594
		#04	3.057	2.667	1.972	1.322	0.612		0.253
		#05	4.682	4.068	3.851	3.085	1.997		0.580
		#06	5.090	4.517	4.277	3.345	2.101		0.753
	60	#07	5 093		4 638	3 938	2 620		0.918
		#08	4.574		4 258	3 466	2 255		0 769
		#09	4 566		3 808	3 039	1.657		0.558
		#10	4.318		3 969	3 319	2 227		0.959
		#11	4 945		4 4 2 9	3 522	2 194		0 749
		#12	5 176		4 650	4 255	2.134		1 122
	10/	#13	3 077		3.542	3.075	1 970		0 789
	184	#13	4,622		4 265	3.075	2.070		1.654
		#14	4.033		4.200	3.980	2.979		2.070
		#15	4.930		4.784	4.491	3./10		2.078
		#16	4.410		4.067	3./15	2.805		1.354
		#17	4.755		4.505	3.982	2.929		1.469
		#18	5.006	•	4.628	4.177	3.566	•	1.977

Table 10: CTR @ I_{LED} =10mA and V_{CE} =1V at increasing fluence for each tested device.

Fluence (p/cm2)

Fig. 10: The test data were statistically treated employing the one sided tolerance limit method. There is 90% probability with 90% confidence that the CTR(If=10mA,Vce=1V) will be within the confidence interval limits reported in the graph.

Table 11:Mean CTR and 90%confidence of 90% probabilityintervals, plotted in Fig. 10.

	1		Min Conf.Int.	Mean(y)	Max Conf.Int
Part type	Proton Energy (MeV)	Fluence (p/cm2)	Mean	Mean	Mear
66191-313	28	1e+9	1.7997152847	2.355	2.910886751
		1e+10	1.508860127	1.998	2.487155809
		3e+10	1.187757597	1.579	1.9700555940
		7e+10	0.8703572958	1.133	1.3951362854
		2e+11	0.3889814515	0.503	0.617127446
		6e+11	0.0476210285	0.066	0.0834856559
	60	1e+9	1.5430199567	2.315	3.0867941204
		3e+10	1.2088597413	1.819	2.42836912
		7e+10	0.9318188161	1.355	1.778229878
		2e+11	0.5043468407	0.707	0.910593398
		6e+11	0.1029924341	0.146	0.18999118
	184	1e+9	1.7690819213	2.338	2.906659557
		3e+10	1.4827306935	1.961	2.4396420378
		7e+10	1.2528600111	1.65	2.0474941279
		2e+11	0.7812328763	1.073	1.3648079604
		4.7e+11		0.58	
		6e+11	0.2574163238	0.415	0.571891445
66226-001	28	1e+9	2.0073775002	4.669	7.3301058996
		1e+10	1.5547905797	4.228	6.9010527138
		3e+10	0.9512150314	3.685	6.417974875
		7e+10	0.3686704465	2.936	5.5028434978
		2e+11	-0.143429743	1.773	3.688648866
		6e+11	-0.004243566	0.609	1.2220788914
	60	1e+9	3.7223265892	4.779	5.834944327
		3e+10	3.2149984459	4.292	5.3693309034
		7e+10	2.2348243423	3.59	4.9447905315
		2e+11	1.023448531	2.304	3.584121190
		6e+11	0.239010991	0.846	1.452722076
	184	1e+9	3.4429067801	4.62	5.7966350520
		3e+10	2.9061557333	4.298	5.6907898178
		7e+10	2.4180428525	3.903	5.3887300558
		2e+11	1.0736308752	2.993	4.912756907
		6e+11	0.1047690886	1.553	3.001738215

4.3.4 Normalized CTR drifts

The normalized CTR is defined as the ratio of CTR measured at each tested fluence and the initial CTR.

Fluence (p/cm2)

Fig. 11: Degradation of normalized CTR @ I_{LED} =10mA and V_{CE} =1V. The points are the measured data, the lines show the trend of the average for each part type, the error bars the standard deviation.

			Fluence (p/cm2)						
			1e+9	1e+10	3e+10	7e+10	2e+11	4.7e+11	6e+11
			ratio	ratio	ratio	ratio	ratio	ratio	ratio
Part type	Proton Energy (MeV)	SN	Sum	Sum	Sum	Sum	Sum	Sum	Sum
66191-313		28 #01	1.000	0.830	0.655	0.475	0.218		0.028
		#02	1.000	0.836	0.658	0.477	0.216		0.028
		#03	1.000	0.850	0.674	0.489	0.224		0.031
		#04	1.000	0.849	0.673	0.485	0.220		0.029
		#05	1.000	0.855	0.674	0.482	0.207		0.031
		#06	1.000	0.844	0.657	0.465	0.204		0.026
		#07	1.000	0.870	0.692	0.484	0.204		0.027
		#08	1.000	0.848	0.667	0.479	0.211		0.024
		#09	1.000	0.850	0.682	0.494	0.219		0.026
		60 #10	1.000		0.785	0.596	0.323		0.079
		#11	1.000		0.791	0.598	0.320		0.072
		#12	1.000		0.791	0.600	0.319		0.069
		#13	1.000	-	0.782	0.579	0.304		0.062
		#15	1.000		0.774	0.563	0.281		0.051
		#16	1.000	-	0.791	0.590	0.307		0.061
		#17	1.000		0.797	0.586	0.299		0.060
		#18	1.000	-	0.770	0.563	0.292		0.060
		#28	1.000		0.791	0.602	0.317		0.063
	1	84 #19	1.000	-	0.833	0.700	0.448		0.164
		#20	1.000		0.841	0.719	0.484		0.197
		#21	1.000	-	0.861	0.735	0.486		0.199
		#22	1.000		0.832	0.701	0.456		0.179
		#23	1.000	-	0.828	0.688	0.435		0.167
		#24	1.000		0.839	0.705		0.238	
		#25	1.000		0.833	0.697	0.449		0.162
		#26	1.000		0.838	0.709	0.467		0.186
		#27	1.000		0.836	0.701	0.467		0.176
66226-001		28 #01	1.000	0.901	0.751	0.646	0.367		0.13 ⁴
		#02	1.000	0.945	0.794	0.662	0.431		0.147
		#03	1.000	0.941	0.830	0.639	0.366		0.128
		#04	1.000	0.872	0.645	0.432	0.200		0.083
		#05	1.000	0.869	0.822	0.659	0.427		0.124
		#06	1.000	0.887	0.840	0.657	0.413		0.148
		60 #07	1.000		0.911	0.773	0.514		0.180
		#08	1.000		0.931	0.758	0.493		0.168
		#09	1.000		0.834	0.666	0.363		0.122
		#10	1.000		0.919	0.769	0.516		0.222
		#11	1.000		0.896	0.712	0.444		0.151
		#12	1.000		0.898	0.822	0.554		0.217
	1	84 #13	1.000		0.891	0.773	0.495		0.198
		#14	1.000		0.920	0.859	0.643		0.357
		#15	1.000		0.969	0.910	0.752		0.421
		#16	1.000		0.922	0.842	0.636		0.307
		#17	1.000		0.947	0.837	0.616		0.309
		#18	1.000		0.925	0.834	0.712		0.395

 Table 12: Normalized CTR @ ILED=10mA and VCE=1V at increasing fluence for each DUT.

Normalized CTR

Normalized CTR (@lf=10mA, Vce=1V)

Fluence (p/cm2)

Fig. 12: Data were statistically treated employing the one sided tolerance limit method. There is 90% probability with 90% confidence that the CTR (If=10mA,Vce=1V) will be within the confidence interval limits reported in the graph.

Table 13:Summary of mean CTR andmean Normalized CTRdegradation.The mean is calculated on thetested samples for thatirradiation condition.

			/	ra	tio
CTR @ If =10mA, V	ce=1V	Part	type	Part	type
		66191-313	66226-001	66191-313	66226-00
Proton Energy (MeV)	Fluence (p/cm2)	Mean	Mean	Mean	Mean
28	1e+9	2.37	4.67	1	1
	1e+10	2.01	4.23	0.85	0.9
	3e+10	1.59	3.68	0.67	0.78
	7e+10	1.14	2.94	0.48	0.62
	2e+11	0.51	1.77	0.21	0.37
	6e+11	0.07	0.61	0.03	0.13
60	1e+9	2.31	4.81	1	1
	3e+10	1.82	4.3	0.79	0.9
	7e+10	1.36	3.6	0.59	0.75
	2e+11	0.71	2.31	0.31	0.48
	6e+11	0.15	0.85	0.06	0.18
184	1e+9	2.34	4.62	1	1
	3e+10	1.97	4.3	0.84	0.93
	7e+10	1.65	3.9	0.71	0.84
	2e+11	1.07	2.99	0.46	0.64
	4.7e+11	0.58		0.24	
	6e+11	0.41	1.55	0.18	0.33

5 CTR DEGRADATION AS A FUCTION OF DISPLACEMENT DAMAGE DOSE

As already stated, three proton energies were employed during the irradiation test campaign. The corresponding non-ionizing energy loss (NIEL) varies by a factor two from the lowest to the highest energy (28 to 184MeV respectively).

Since the optocouplers tested consist of a AlGaAs LED and photodiode while the output transistor is Si, NIEL for both materials have been considered. The results show better correlation with Si NIEL. It is therefore probable to assume that the Si output transistor is the main contributor to the device's DD sensitivity.

In the following analysis (Fig. 13 to Fig. 16) the test results for the three different energies employed have been plotted using the Displacement Damage Dose (DDD) deposited during irradiation. DDD was calculated as defined by

 $DDD = NIEL(E) \cdot \phi$

where NIEL (MeV/ $cm^2 g$) is for protons in Si and ϕ is the proton fluence (proton/ cm^2). In addition to the DDD plots, the results have also been plotted as a function of 60MeV equivalent proton fluence. The 60MeV equivalent proton fluence was calculated by:

Proton Energy (MeV)	NIEL (Si) Mev*cm^2/g	Irradiation Fluence (p/cm2)			Normalia degrad	zed CTR lation
			DDD (Mev/g)	Equivalent 60MeV Fluence	66191	66226
28	0.00439	1.00E+09	4.39E+06	1.31E+09	1	1
		1.00E+10	4.39E+07	1.31E+10	0.85	0.9
		3.00E+10	1.32E+08	3.94E+10	0.67	0.78
		7.00E+10	3.07E+08	9.20E+10	0.48	0.62
		2.00E+11	8.78E+08	2.63E+11	0.21	0.37
		6.00E+11	2.63E+09	7.89E+11	0.03	0.13
60	0.00334	1.00E+09	3.34E+06	1.00E+09	1	1
		2.00E+10	6.68E+07	2.00E+10		
		3.00E+10	1.00E+08	3.00E+10	0.79	0.9
		7.00E+10	2.34E+08	7.00E+10	0.59	0.75
		2.00E+11	6.68E+08	2.00E+11	0.31	0.48
		6.00E+11	2.00E+09	6.00E+11	0.06	0.18
184	0.00187	1.00E+09	1.87E+06	5.60E+08	1	1
		3.00E+10	5.61E+07	1.68E+10	0.84	0.93
		7.00E+10	1.31E+08	3.92E+10	0.71	0.84
		2.00E+11	3.74E+08	1.12E+11	0.46	0.64
		4.70E+11	8.79E+08	2.63E+11	0.24	
		6.00E+11	1.12E+09	3.36E+11	0.18	0.33

Equivalent 60 MeV Fluence = $\frac{NIEL(E)}{NIEL(60 \text{ MeV})} \phi(E)$

Table 14: NIEL (Si) values of the three proton beam energies used. For each irradiation step the corresponding DDD (MeV/g) and the equivalent 60MeV proton fluence (p/cm^2) is reported.

Fig. 13: CTR degradation for three different proton energies plotted as a function of received fluence (a), as a function of 60MeV equivalent proton fluence(b) as a function of displacement damage dose (c).

Fig. 14: **Normalized CTR** degradation for 66191-313 the three proton energies are plotted as a function of received fluence Part type (a), as a function of 60MeV equivalent proton fluence (b) as a function of displacement 66226-00 damage dose (c).

Page 28/30 ESA Standard Document Date 29/05/2012 Issue 1 Rev 1

CTR

Fig. 15 CTR degradation as function of 60MeV equivalent proton fluence. Data were statistically treated employing the one sided tolerance limit method. There is 90% probability with 90% confidence that the CTR (If=10mA,Vce=1V) will be within the confidence interval limits reported in the graph.

Fig. 16 CTR degradation as function of DDD. Data were statistically treated employing the one sided tolerance limit method. There is 90% probability with 90% confidence that the CTR (If=10mA,Vce=1V) will be within the confidence interval limits reported in the graph.

CTR

DDD (MeV/g)

6 CONCLUSIONS

Considering the mean initial CTR on all tested samples (Fig. 8), 66226-001 has on average better performances than 66191-313, despite a larger part-to-part response non uniformity:

For the selected biasing point of CTR of If=10mA and Vce=1V on the initial characterisation:

-66191-313 has on average a CTR0=2.336 and a standard deviation of 0.289

-66226-001 has on average a CTR0=4.689 and a standard deviation of 0.547

The average CTR of the 66191-313 goes out of spec at a fluence between 8E+10 and 2E+11 protons/cm². However the average CTR of the 66226-001 device goes out of spec at a fluence greater than 4E+11 protons/cm² (Fig. 8).

Notably, when the 90% probability, 90% confidence limits are taken into account the larger part-to-part non uniformity of 66226-001 (Fig. 10) impacts the fluence at which a failure is expected, and the degradation becomes comparable between the two part types:

- For 66191-313: 3E10 p/cm2 at 28 MeV, 2E11 p/cm2 at 60 MeV and 184 MeV,
- For 66226-001: 5E10 p/cm2 at 28 MeV, 6E10 p/cm2 at 60 MeV and 1E11 p/cm2 at 184 MeV.

From the decrease of the normalized CTR (Fig. 11) we can observe that the impact of proton irradiation is more relevant on CTR of 66191-313, but if the confidence interval limits are taken into account, the decrease of normalized CTR between the two part types are comparable (Fig. 12).

Please note that for project applications both DD and TID degradation shall be accounted for according to project RHA requirements.