

Single Event Effects

Heavy Ion Test Report

Test type Single-Event Upset, Single Event Latchup, SEFI

Part Reference K4B4G0846Q

Tested function DDR3L SDRAM

Chip manufacturer Samsung

Test Facility RADEF, University of Jyväskylä

Test Date December 2017, January 2018

Customer ESA ESTEC

Esa Estec Purchase Order N° 4000112477/14/NL/HB dated December 4th, 2014

BCE 5524

Hirex reference :	HRX/SEE/00638	Issue: 01	Date :	28/02/2019
Written by :	F. Lochon / F.X. Guerre			
Authorized by:	F.X. Guerre	Study Manager	(fm

Ref.: HRX/SEE/00638

Issue: 01

DOCUMENTATION CHANGE NOTICE

Issue	Date	Page	Change Item	
01	28/02/2019	-	Original issue	
01	28/02/2019		Original issue	

Contributors to this work
Frédéric Lochon
Bendy Tanios

Hirex Engineering Hirex Engineering

Ref.: HRX/SEE/00638 Issue: 01

TABLE OF CONTENTS

1	. INTRODUCTION	4									
2											
	Applicable Documents	4									
	Reference Documents	4									
3	DEVICE INFORMATION	5									
	Device description	5									
	Device and die identification										
	Sample preparation	5									
4	TEST SETUP	6									
5	TEST SEQUENCES	7									
	Read/Write sequence	7									
	Read/Write with load registers sequence										
	Read/Write with DUT reset sequence	7									
6	RADEF FACILITY	8									
	6.1 Test chamber	۶									
	6.2 Beam quality control										
	6.3 Dosimetry										
	6.4 Used ions	8									
7	TEST CONDITIONS.	9									
8	DETAILED RESULTS	9									
	8.1 Read/write sequence	ç									
	8.2 Read/Write with load registers or DUT reset sequences										
	Read/Write sequence including load registers steps	14									
	Read/Write sequence including DUT reset steps										
	8.3 SEL test runs	17									
9	GLOSSARY	19									
	LIST OF TABLES										
Т	able 1 - Ion beam setting	8									
	able 2: Detailed SEE results										
	able 3 – Runs table for Read/write with load registers or DUT reset sequences										
Т	able 4 – Runs table for SEL test runs	17									
	LIST OF FIGURES										
F	igure 1: Package, top	5									
	igure 2: Package, bottom										
	igure 3: Die view.										
	igure 4: Die marking										
	Figure 5: Hirex SEE test setup										
	Figure 6 – H5TC4G83CFR, High Speed and Low Speed Read Write, SEU bit error cross-section / bit										
	igure 7 – Cumulated Logic error cross-section plotigure 8 –stuck bit error cross-section per bit plot										
	rigure 9 – Run chronograms for read/write with load registers sequence										
	igure 10 – Run chronograms for read/write with DUT reset sequence										
	igure 11 – Run chronograms for read/write with SEFI during DUT reset sequence										
	igure 12 – K4B4G0846Q, SEL test board 6, Low Speed, Run044 chronogram										
	igure 13 – K4B4G0846Q, SEL test board 7, Low Speed, Run045 chronogram										

Ref.: HRX/SEE/00638

Issue: 01

1 Introduction

This report presents results of SEE heavy ion test campaigns for the Samsung DDR3L SDRAM K4B4G0846Q. 4 parts were used with 2 parts per test mode, high speed and low speed. The test campaign took place at RADEF, University of in December 2017 and January 2018.

2 Applicable and Reference Documents

Applicable Documents

AD-1 Samsung K4B4G0846Q 4Gb DDR3L SDRAM Datasheet, Rev. 1.0, Jun. 2013

AD-2 K4B4G0846Q physical analysis HRX/RCA/00105

Reference Documents

RD-1. Single Event Effects Test method and Guidelines ESA/SCC basic specification No 25100

Issue: 01

3 Device Information

Device description

K4B4G0846Q, DDR3L SDRAM

Manufacturer: Samsung

Package: 78-Ball FBGA 11 x 10 mm

Marking: SEC 510 HYKO K4B4G0846Q EKA3R9GDC

Date code1510Technology:CMOSDie dimensions:7.3 x 8.6 mm

This 4Gb memory is composed of 1 die with 8 banks of 1024 rows by 65536 columns of 8 bits words.

Device and die identification

Figure 1: Package, top.

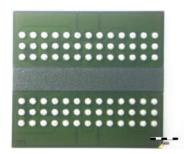


Figure 2: Package, bottom.

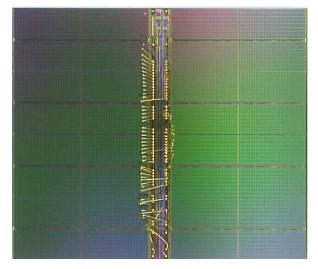


Figure 3: Die view.

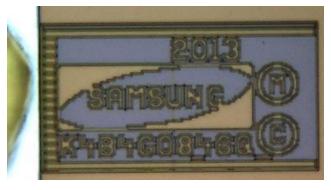


Figure 4: Die marking.

Sample preparation

Each DUT has been prepared by die back thinning. The table here below gives the results of this preparation step.

Board #	Mean thickness (μm)	Max (μm)	Min (μm)
1	61.5	69	50
2	69	77	59
6	78	84	67
7	83	90	67
8	68	75	58

Issue: 01

4 Test Setup

Figure 5 shows the principle of the single event test system.

The test system is based on a Kintex7 FPGA (Xilinx).

The test board includes 2 slots for high speed and low speed SODDIMM daughter boards on which is mounted one DUT memory.

The test board includes the voltage/current monitoring and the latch-up management of the DUT power supplies up to 24 independent channels.

The communication between the test chamber and the controlling computer is effectively done by a 100 Mbit/s Ethernet link which safely enables high speed data transfer.

One DUT (low speed or high speed) is exposed at a time

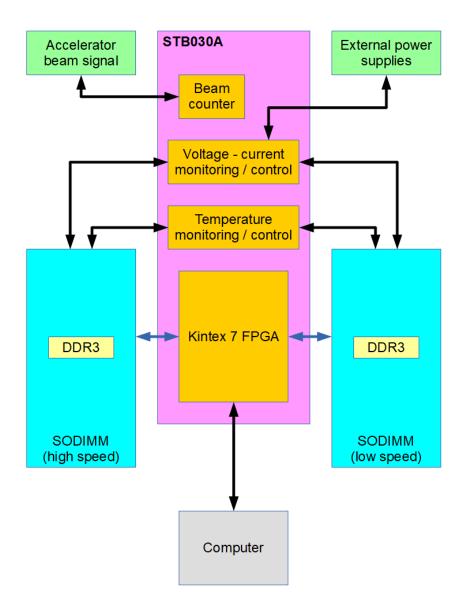


Figure 5: Hirex SEE test setup

Ref.: HRX/SEE/00638

Issue: 01

5 Test sequences

Low speed mode is performed at a DUT clock frequency of 325MHz while high speed is performed at 700MHz. Refresh time is set to 6.8µs.

Read/Write sequence

- Repeat cycles:
 - Write memory with 0x55 /0xAA
 - Wait 1s
 - First Read memory (R1)
 - Second Read memory (R2)

Before the test campaigns, the following has been checked:

- Write the entire memory
- Then repeat cycles
 - Load register step or a Reset DDR3
 - o Read memory

No error could be detected

That is why the basic Read/Write sequence have been modified to create 2 new test sequences.

Read/Write with load registers sequence

- Repeat cycles:
 - Load MRS
 - Wait 0.1s
 - Write memory with 0x55 /0xAA
 - Wait 0.5s
 - Load MRS
 - Wait 0.1s
 - First Read memory (R1)
 - Second Read memory (R2)

Read/Write with DUT reset sequence

- Repeat cycles:
 - Reset DDR3
 - Wait 0.1s
 - Write memory with 0x55 /0xAA
 - Wait 0.5s
 - Reset DDR3
 - Wait 0.1s
 - First Read memory (R1)
 - Second Read memory (R2)

The two functions Load MRS and Reset DDR3 are detailed here below

Load MRS

re-program mode registers MR0-MR3 of the DDR3 memory via MRS command

Reset DDR3

used to clear all state information in the DDR3 memory device.

The reset sequence as preconized by devices datasheets and JEDEC standard No. 79-3F is the following:

- 1- Physical reset (Warm reset) using DDR3 RESET# pin
- 2- Load mode registers via MRS command
- 3- ZQ Calibration used to calibrate the DDR3 memory output drivers and ODT (On-Die Termination) values via ZQCL command

Issue: 01

6 RADEF facility

The facility includes a special beam line dedicated to irradiation studies of semiconductor components and devices. It consists of a vacuum chamber including component movement apparatus and the necessary diagnostic equipment required for the beam quality and intensity analysis.

The cyclotron is a versatile, sector-focused accelerator of beams from hydrogen to xenon equipped with three external ion sources: two electron cyclotron resonance (ECR) ion sources designed for high-charge-state heavy ions, and a multicusp ion source for intense beams of protons. The ECR's are especially valuable in the study of single event effects (SEE) in semiconductor devices. For heavy ions, the maximum energy attainable can be determined using the formula,

130 Q²/M,

where Q is the ion charge state and M is the mass in Atomic Mass Units.

6.1 Test chamber

Irradiation of components is performed in a vacuum chamber with an inside diameter of 75 cm and a height of 81 cm.

The vacuum in the chamber is achieved after 15 minutes of pumping, and the inflation takes only a few minutes. The position of the components installed in the linear movement apparatus inside the chamber can be adjusted in the X, Y and Z directions. The possibility of rotation around the Y-axis is provided by a round table. The free movement area reserved for the components is 25 cm x 25 cm, which allows one to perform several consecutive irradiations for several different components without breaking the vacuum. The assembly is equipped with a standard mounting fixture. The adapters required to accommodate the special board configurations and the vacuum feed-throughs can also be made in the laboratory's workshops. The chamber has an entrance door, which allows rapid changing of the circuit board or individual components.

A CCD camera with a magnifying telescope is located at the other end of the beam line to determine accurate positioning of the components. The coordinates are stored in the computer's memory allowing fast positioning of various targets during the test.

6.2 **Beam quality control**

For measuring beam uniformity at low intensity, a CsI(Tl) scintillator with a PIN-type photodiode readout is fixed in the mounting fixture. The uniformity is measured automatically before component irradiation and the results can be plotted immediately for more detailed analysis.

A set of four collimated PIN-CsI(TI) detectors is located in front of the beam entrance. The detectors are operated with step motors and are located at 90 degrees with respect to each other. During the irradiation and uniformity scan they are set to the outer edge of the beam in order to monitor the stability of the homogeneity and flux.

Two beam wobblers and/or a 0.5 microns diffusion Gold foil can be used to achieve good beam homogeneity. The foil is placed 3 m in front of the chamber. The wobbler-coils vibrate the beam horizontally and vertically, the proper sweeping area being attained with the adjustable coil-currents.

6.3 **Dosimetry**

The flux and intensity dosimeter system contains a Faraday cup, several collimators, a scintillation counter and four PIN-CsI(TI) detectors. Three collimators of different size and shape are placed 25 cm in front of the device under test. They can be used to limit the beam to the active area to be studied.

At low fluxes a plastic scintillator with a photomultiplier tube is used as an absolute particle counter. It is located behind the vacuum chamber and is used before the irradiation to normalize the count rates of the four PIN-CsI(TI) detectors.

6.4 Used ions

lan	LET ^{SRIM} at surface	Range	Beam energy
lon	[MeV.cm ² .mg ⁻¹]	[µm]	[MeV]
¹⁵ N ⁴⁺	1.83	202	139
²⁰ Ne ⁶⁺	3.63	146	186
⁴⁰ Ar ¹²⁺	10.2	118	372
⁵⁶ Fe ¹⁵⁺	18.5	97	523
⁸² Kr ²²⁺	32.1	94	768
¹³¹ Xe ³⁵⁺	60.0	89	1217

SRIM-2003.26

Table 1 - Ion beam setting

Ref.: HRX/SEE/00638

ssue : 01

7 Test conditions.

SEU tests were carried out closed to Vddmin at 1.30V and room temperature (1.35V and room temperature during January 2018 campaign).

Each memory present 8 banks of 65536 columns by 1024 rows of 8-bit words.

Each memory plane is traversed by bank, column, row which means that bank0, column0, row 0 to row 1023 is read, then bank0, column1, row 0 to row 1023, etc.

Read is done by burst which corresponds to 8 words. Each time at least 1 word is in error among the 8 words, the burst is recorded.

8 Detailed results

8.1 Read/write sequence

Results are summarized in. Table 2

The meaning of the different column headers of Table 2 are explicitled here below.

Pre-run errors

Stuck bits present before exposure. They could have been created during previous runs on the DUT.

R1 bit errors

Number of errors detected during READ1 but not during READ2. These errors which represent reading errors are very few and affect only a limited number of READ1 steps.

R1/R2 bit errors

Number of errors detected during READ1 and during READ2. These errors represent SEU WRITE bit errors or SEU cells errors occurring during the time the cell is not written (as for instance during WAIT step but not only).

R2 bit errors

Number of errors detected during READ2 only: These errors represent reading errors which are expected to be quite few as for R1 bit errors and the SEU cells errors occurring during the time the cell is not read. Persistent bit errors

Bit errors that last more than one sequence iteration. Part of these errors can persist up to the end of the run and are then counted as post-run bit errors (stuck bits). Pre-run errors have been subtracted from the persistent bit error count.

Colum error

Likely an error in the logic. A column error can affect two banks at a time.

Row errors

Likely an error in the logic. Consist in a portion of row in error in a bank.

<u>SEFI</u>

These errors consist mainly in column errors that persist during several sequence iterations. Most of them induce a count clamped to the limit set at 50000. Only a few involved only a single column. The vast majority have been cured by a manual power reset. Some have disappeared under exposure without any external action.

Post-run bit errors

The errors are stuck bits. All affected words are single bit upset.

Figure 6 shows the SEU bit error cross-section for the 2 test modes, low speed and high speed. Depending on test campaign dates, test was performed with a DUT bias of 1.30V or 1.35V.

No significant difference is observed between the two test modes.

In Figure 6, the points with Xenon are too high to plot a single Weibull Plot.

Figure 7 shows the logic error cross-section per device. Again, no significant difference is observed between the two test modes.

Figure 8 shows the stuck bit error cross-section per bit

Test campaign date	Facility	dut_medium	run_number	Facility_run_number	board_id	power_config	bias_config	test_mode	temperature	lon	tilt	Average silicon die thickness	LET at die silicon back	Effective LET at active die surface	run_duration	entered_fluence	eff. Fluence	pre-run errors	R1	R1R2	R2	persistent	post run errors	total cells error	capacity	Cell error cross-section	col error	row error	Large error clamped to limit	Large event type2	sefi	total logic error	Logic error cross-section	Stuck bit cross- section j bit
W50-2017	RADEF	vacuum	34	59	S1		_		-	N	0	61	1.83	2	274	2.0E+06	2.0E+06	0	0	0	0	0	0	0	4.3E+09		0	0	0	0	0	0		
W50-2017	RADEF	vacuum	38	63	S1	1.3	-	read write	_	Fe	0	61	18.5	26.54	412	2.0E+05	2.0E+05	0	8	3	2	13	0	26	4.3E+09		3	7	0	0	0	10	5.0E-05	
W50-2017					S1	1.3	1	read write		Kr	0	61	32.2	37	360	-	2.0E+05	0	7	4	1	12	0	24		2.8E-14	5	2	0	0	1	8	4.0E-05	
W50-2017			_		S2	1.3	-	read write		N	0	69	1.83	2	232	2.0E+06		0	0	0	0	0	0	0	4.3E+09		1	0	0	0	0	1	5.0E-07	
W50-2017					S2	1.3	_	read write		Kr	0	69	32.2	41	344	2.0E+05		0	12	12	0	24	0	48	4.3E+09		4	9	0	0	2	15	7.5E-05	
W06-2018				42	s6	1.35	_	read write	-	Ar	0	78	10.2	15.26	920	2.0E+06		0	1	47	44	1	0	93		1.1E-14			0	2	2	53	2.7E-05	
W06-2018				57	-	1.35	1	reset ddr3		Kr	0	78	32.2	37	679		2.0E+06	24					23	787	4.3E+09		41		2	1	0	92	+	2.7E-15
W06-2018				39	-	1.35		read write		Ar	0	83	10.2	15.86			2.0E+06	0	0	24	20	0	0	44	4.3E+09			49	1	4	0	75	+	
W06-2018	RADEF	vacuum	28	62		1.35	-	reset ddr3		Kr	0	83	32.2	32	1009	2.0E+06	2.0E+06	8	6	242	236	219		703	4.3E+09	8.2E-14	43	82	2	1	0	128		
W17-2018	RADEF	vacuum	6	6	s8	1.35	HS	reset ddr3	room	Kr	0	68	32.2	41	944	1.0E+06	1.0E+06	0	5	141	176	26		348	4.3E+09	8.1E-14	27	67	1	0	0	95	9.5E-05	
W17-2018			-	12	s8	1.35	HS	read write	room	Xe	0	68	60	59.2	589	1.0E+06	1.0E+06	4					406	5709	4.3E+09	1.3E-12	74	54	1	0	8	137	1.4E-04	9.5E-14
W50-2017	RADEF	vacuum	32	57	S1	1.3	-	read write		N	0	61	1.83	2	222	2.0E+06	2.0E+06	0	0	0	0	0	0	0	4.3E+09		0	0	0	0	0	0		
W50-2017	RADEF	vacuum	63	86	S1	1.3	LS	read write	room	Kr	0	61	32.2	37	356	2.0E+05	2.0E+05	0	17	4	2	23	1	46	4.3E+09	5.4E-14	10	5	0	0	0	15	7.5E-05	1.2E-15
W50-2017	RADEF	vacuum	35	60	S2	1.3	LS	read write	room	N	0	69	1.83	2	293	2.0E+06	2.0E+06	0	0	1	0	0	0	1	4.3E+09	1.2E-16	0	2	0	0	0	2	1.0E-06	
W50-2017	RADEF	vacuum	37	62	S2	1.3	LS	read write	room	Fe	0	69	18.5	28.18	189	1.0E+06	1.0E+06	1	18	19	5	43	0	85	4.3E+09	2.0E-14	6	28	0	0	1	35	3.5E-05	
W50-2017	RADEF	vacuum	60	83	S2	1.3	LS	read write	room	Kr	0	69	32.2	41	356	2.0E+05	2.0E+05	0	30	7	2	39	0	78	4.3E+09	9.1E-14	5	6	0	0	0	11	5.5E-05	
W06-2018	RADEF	vacuum	27	61	s6	1.35	LS	reset ddr3	room	Kr	0	78	32.2	37	1371	2.0E+06	2.0E+06	26	5	253	274	175		707	4.3E+09	8.2E-14	51	67	4	0	0	122	6.1E-05	
W06-2018	RADEF	vacuum	6	43	s7	1.35	LS	read write	room	Ar	0	83	10.2	15.86	1002	2.0E+06	2.0E+06	0	0	29	31	1	0	61	4.3E+09	7.1E-15	12	29	1	1	2	45	2.3E-05	
W06-2018	RADEF	vacuum	24	58	s7	1.35	LS	reset ddr3	room	Kr	0	83	32.2	32	692	2.0E+06	2.0E+06	0					12	380	4.3E+09	4.4E-14	28	56	4	3	0	91	4.6E-05	1.4E-15
W06-2018	RADEF	vacuum	2	40	s8	1.35	LS	read write	room	Ar	0	68	10.2	14.15	535	1.2E+06	2.0E+06	0	0	8	26	0	0	34	4.3E+09	4.0E-15	8	33	0	0	0	41	3.5E-05	
W06-2018	RADEF	vacuum	3	41	s8	1.35	LS	read write	room	Ar	0	68	10.2	14.15	662	2.0E+06	2.0E+06	0	0	16	46	0	0	62	4.3E+09	7.2E-15	14	52	1	1	1	69	3.5E-05	
W17-2018	RADEF	vacuum	4	4	s8	1.35	LS	reset ddr3	room	Kr	0	68	32.2	41	1608	1.0E+06	9.7E+05	1	6	125	175	24	13	375	4.3E+09	9.0E-14	48	64	3	0	1	116	1.2E-04	3.0E-15
W17-2018	RADEF	vacuum	16	15	s8	1.35	LS	read write	room	Xe	0	68	60	59.2	743	1.0E+06	2.5E+05	305					765	2385	4.3E+09	2.2E-12	17	11	0	0	3	31	1.2E-04	1.8E-13

Table 2: Detailed SEE results.

K4B4G0846Q cells error cross-section / bit

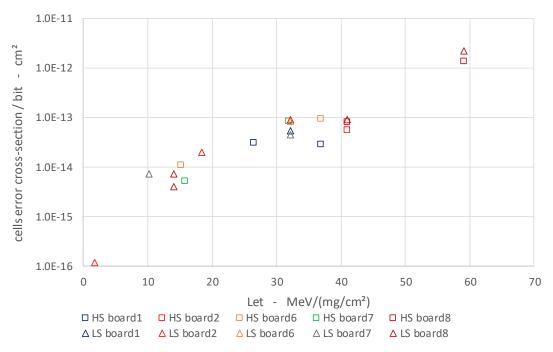


Figure 6 - H5TC4G83CFR, High Speed and Low Speed Read Write, SEU bit error cross-section / bit

K4B4G0846Q logic error cross-section / device

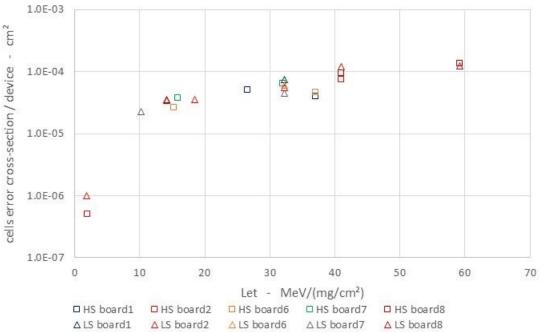


Figure 7 – Cumulated Logic error cross-section plot

Hirex Engineering

Ref.: HRX/SEE/00638

Issue: 01

K4B4G0846Q, stuck bit cross-section per bit

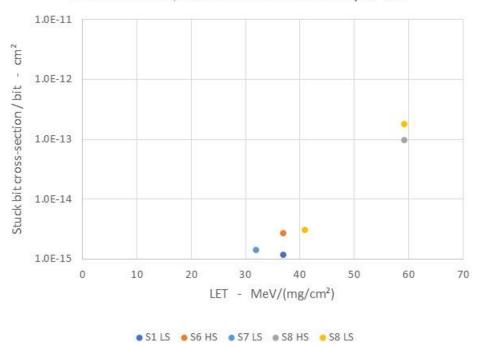


Figure 8 –stuck bit error cross-section per bit plot

Issue: 01

8.2 Read/Write with load registers or DUT reset sequences

Purpose of these sequences was to evaluate the addition in the read/write sequence of steps for either reloading the DUT register content or doing a DUT reset, in SEFI occurrence.

No power reset was performed during these runs to clear SEFI if any.

The corresponding table of runs is shown in Table 3.

The run chronograms are shown in Figure 9 and Figure 10.

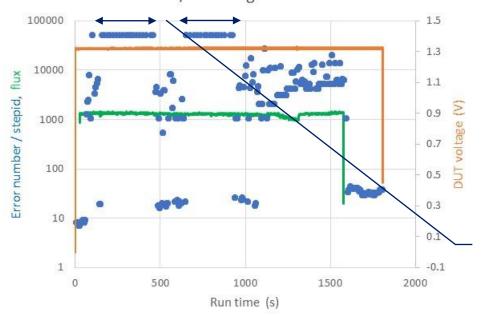
The insertion of DRR3 resets in the read write sequence look to help to avoid SEFI occurrence while insertion of load registers steps is not sufficient to avoid any SEFI. However, in Figure 11, with ddr3 reset sequence, one can see the persistence of an error even after beam stop. Figure 1

	Facility	dut_medium	run_number	Facility_run_number	board_id	power_config	bias_config test_mode		temperature	lon	tilt	LET at die back sisde	run_duration	entered_fluence
W06-2018	RADEF	vacuum	21	55	s6	1.35	HS	load mrs	room	Kr	0	32.2	294	7.99E+05
W06-2018	RADEF	vacuum	22	56	s6	1.35	HS	load mrs	room	Kr	0	32.2	1209	2.00E+06
W06-2018	RADEF	vacuum	23	57	s6	1.35	HS	reset ddr3	room	Kr	0	32.2	679	2.00E+06
W06-2018	RADEF	vacuum	24	58	s 7	1.35	LS	reset ddr3	room	Kr	0	32.2	692	2.00E+06
W06-2018	RADEF	vacuum	25	59	s7	1.35	LS	load mrs	room	Kr	0	32.2	1438	2.00E+06
W06-2018	RADEF	vacuum	26	60	s6	1.35	LS	load mrs	room	Kr	0	32.2	1550	2.00E+06
W06-2018	RADEF	vacuum	27	61	s6	1.35	LS	reset ddr3	room	Kr	0	32.2	1371	2.00E+06
W06-2018	RADEF	vacuum	28	62	s7	1.35	HS	reset ddr3	room	Kr	0	32.2	1009	2.00E+06
W06-2018	RADEF	vacuum	29	63	s7	1.35	HS	load mrs	room	Kr	0	32.2	1337	2.00E+06
W17-2018	RADEF	vacuum	1	1	s7	1.35	HS	reset	room	Kr	0	32.2	1198	1.00E+06
W17-2018	RADEF	vacuum	2	2	s7	1.35	HS	load mrs	room	Kr	0	32.2	1485	1.00E+06
W17-2018	RADEF	vacuum	3	3	s8	1.35	LS	load mrs	room	Kr	0	32.2	1330	1.00E+06
W17-2018	RADEF	vacuum	4	4	s8	1.35	LS	reset	room	Kr	0	32.2	1608	1.00E+06
W17-2018	RADEF	vacuum	5	5	s7	1.35	LS	reset	room	Kr	0	32.2	1475	1.00E+06
W17-2018	RADEF	vacuum	6	6	s8	1.35	HS	reset	room	Kr	0	32.2	944	1.00E+06
W17-2018	RADEF	vacuum	7	7	s8	1.35	HS	load mrs	room	Kr	0	32.2	1350	1.00E+06

Table 3 – Runs table for Read/write with load registers or DUT reset sequences

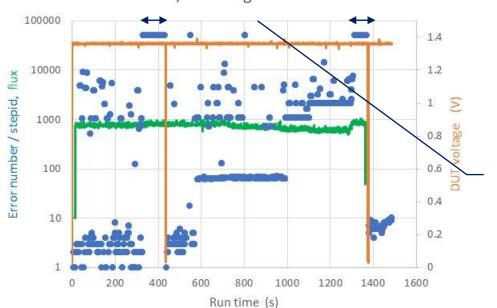
Hirex Engineering

Ref.: HRX/SEE/00638


Issue: 01

Read/Write sequence including load registers steps

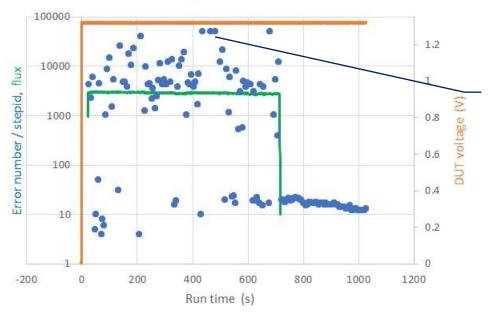
W06Run026 and W17Run07 have been performed with the read/write sequence including load registers and the run chronograms are shown here below.


SEFis are present and are not immediately cured by the reloading of memory registers

K4B4G0846Q, W06, run26 board6 Low Speed read/write register load

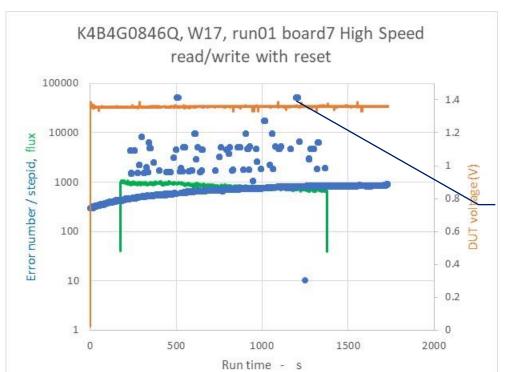
2 Series of clamped (50000) large errors with the same signature healed under beam exposure

K4B4G0846Q, W17, run07 board8 High Speed read/write register load



2 Series of clamped (50000) large errors with the same signature healed by a power resete

Figure 9 - Run chronograms for read/write with load registers sequence


Read/Write sequence including DUT reset steps

K4B4G0846Q, W06, run24 board7 Low Speed read/write with reset

No Serie of clamped (50000) large errors. Only R1 stepid followed by R2 stepid

Not a SEFI

Large event during R1 and R2 Not a SEFI

Figure 10 – Run chronograms for read/write with DUT reset sequence

Issue: 01

K4B4G0846Q, W17, run04 board8 Low Speed read/write with reset

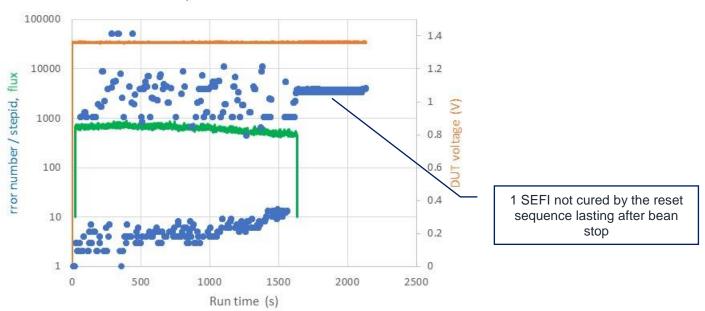


Figure 11 – Run chronograms for read/write with SEFI during DUT reset sequence

Ref.: HRX/SEE/00638 Issue: 01

8.3 **SEL test runs**

During test campaign 2018 W06, 2 runs have been performed with Xenon at 1.45V and a temperature of 85°C.

During SEL testing, read/write sequence was executed with a very low clamp limit for each stepid. Table 4 list the SEL runs performed.

Facility	dut_medium	run_number	Facility_run_number	board_id	die silicon thickness μm	power_config	bias_config	test_mode	temperature	lon	tilt	run_duration	entered_fluence
RADEF	vacuum	44	74	s6	78	1.45	LS	SEL	85	Xe	0	549	1.00E+07
RADEF	vacuum	45	75	s7	83	1.45	LS	SEL	85	Xe	0	530	1.00E+07

Table 4 - Runs table for SEL test runs

No latch has been observed. However some steps currents can be observed.

The corresponding runs chronograms are shown in Figure 13 and Figure 12.

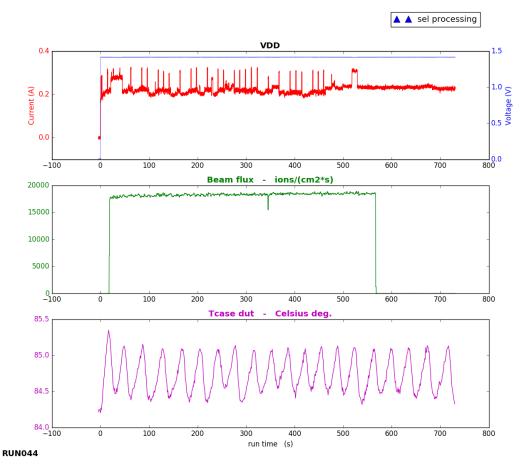


Figure 12 - K4B4G0846Q, SEL test board 6, Low Speed, Run044 chronogram

Issue: 01

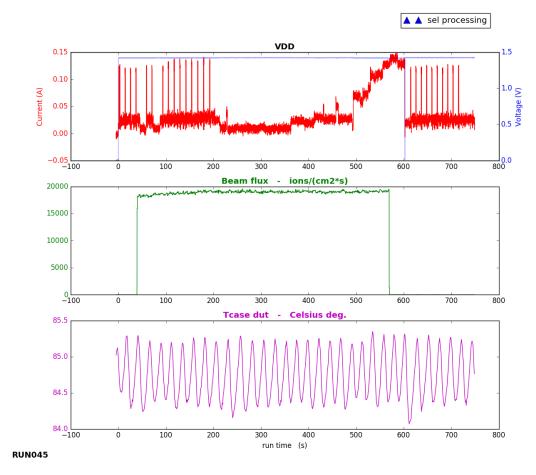


Figure 13 – K4B4G0846Q, SEL test board 7, Low Speed, Run045 chronogram

Hirex Engineering

SEE Test Report

Ref.: HRX/SEE/00638

Issue: 01

9 Glossary

DUT: Device under test.

Fluence (of particle radiation incident on a surface): The total amount of particle radiant energy incident on a surface in a given period of time, divided by the area of the surface. In this document, Fluence is expressed in ions per cm².

Flux: The time rate of flow of particle radiant energy incident on a surface, divided by the area of that surface. In this document, Flux is expressed in ions per cm².s.

Single-Event Effect (SEE): Any measurable or observable change in state or performance of a microelectronic device, component, subsystem, or system (digital or analog) resulting from a single energetic particle strike. Single-event effects include single-event upset (SEU), multiple-bit upset (MBU), multiple-cell upset (MCU), single-event functional interrupt (SEFI), single-event latch-up (SEL).

Single Event Gate Rupture (SEGR) / **Single Event Dielectric Rupture** (SEDR): Destructive rupture of the gate oxide layer or dielectric layer by a single ion strike. This leads to leakage currents under bias and can be observed as stuck bits in digitals devices

Single-Event Upset (SEU): A soft error caused by the transient signal induced by a single energetic particle strike.

Single-Event Transient (SET): A transient signal induced by a single energetic particle strike.

Single-Event Latch-up (SEL): An abnormal high-current state in a device caused by the passage of a single energetic particle through sensitive regions of the device structure and resulting in the loss of device functionality. SEL may cause permanent damage to the device. If the device is not permanently damaged, power cycling of the device (off and back on) is necessary to restore normal operation.

An example of SEL in a CMOS device is when the passage of a single particle induces the creation of parasitic bipolar (p-n-p-n) shorting of power to ground.

Single-Event Functional Interrupt (SEFI): A soft error that causes the component to reset, lock-up, or otherwise malfunction in a detectable way, but does not require power cycling of the device (off and back on) to restore operability, unlike single-event latch-up (SEL), or result in permanent damage as in single-event burnout (SEB). A SEFI is often associated with an upset in a control bit or register.

Error cross-section: the number of errors per unit fluence. For device error cross-section, the dimensions are cm² per device. For bit error cross-section, the dimensions are cm² per bit.

Tilt angle: tilt angle, rotation axis of the DUT board is perpendicular to the beam axis; roll angle, board rotation axis is parallel to the beam axis

Weibull fit: $F(x) = A (1 - exp{-[(x-x_0)/W]^s})$ with:

x = effective LET in MeV/(mg/cm²);
F(x) = SEE cross-section in cm²;
A = limiting or plateau cross-section;
x₀ = onset parameter, such that F(x) = 0 for x < x₀;
W = width parameter;
s = a dimensionless exponent.

Error bars: error bars are computed using a confidence level of 95% and a beam flux uncertainty of +/-10% as recommended by Single Event Effects Test method and Guidelines ESA/SCC basic specification No 25100.
