

Single Event Effects

Proton Test Report										
Test type	Single-Event Upset, Single Event Latchup									
Part Reference	4B4G0846Q									
Tested function	DDR3L SDRAM									
Chip manufacturer	Samsung									
Test Facility	PIF, Paul Scherrer Institute (PSI), Villigen, Switzerland									
Test Date	May 2018									
Customer	ESA ESTEC									

Esa Estec Purchase Order N° 4000112477/14/NL/HB dated December 4th, 2014

BCE 5524

Hirex reference :	HRX/SEE/00696	Issue : 01	Date :	26/02/2019
Written by :	F. Lochon / F.X. Guerre			
Authorized by:	F.X. Guerre	Study Manager	(fm

Ref.: HRX/SEE/00696 Issue:01

DOCUMENTATION CHANGE NOTICE

Issue	Date	Page	Change Item	
01	26/02/2019		Original issue	

<u>Contributors to this work</u> Frédéric Lochon

Hirex Engineering

TABLE OF CONTENTS

1	INTRODUCTION4	ŧ	
2	APPLICABLE AND REFERENCE DOCUMENTS4	ł	
	Applicable Documents Reference Documents	4 4	1 1
3	DEVICE INFORMATION	5	
	Device description Device and die identification	5 5	55
4	TEST SETUP	5	
5	TEST SEQUENCE	7	
	Read/Write sequence	7	7
6	PIF TEST FACILITY	3	
7	TEST CONDITIONS.	÷	
8	DETAILED RESULTS	÷	
9	GLOSSARY	2	

LIST OF TABLES

Table 1: Detailed SEE results9

LIST OF FIGURES

Figure 1: Package, top	5
Figure 2: Package, bottom	5
Figure 3: Die view	5
Figure 4: Die marking	5
Figure 5: Hirex SEE test setup	
Figure 6 - Proscan facility	8
Figure 7 – 200MeV calibration results and beam profile	
Figure 8 - Cells SEU cross-section / bit plot	.10
Figure 9 – Logic errors cross-section / device plot	.10
Figure 10 – run053, bank0, stepid 49, error mapping	.11

1 Introduction

This report presents results of SEE proton test campaign for the Samsung DDR3L SDRAM 4B4G0846Q. 4 parts were used with 2 parts per test mode, high speed and low speed. The test campaign took place at PIF, Paul Scherrer Institute (PSI), Villigen, Switzerland in May 2018.

This test has been performed after the heavy ion test of the device which shows no SEL event with high LET (Xenon) ion. This is why SEL testing was not repeated during this proton test.

2 Applicable and Reference Documents

Applicable Documents

- AD-1 Samsung 4B4G0846Q 4Gb DDR3L SDRAM Datasheet 4Gb_DDR3L SDRAM Rev. 1.0 Jun 2013
- AD-2 4B4G0846Q physical analysis HRX/RCA/00105

Reference Documents

- RD-1. Single Event Effects Test method and Guidelines ESA/SCC basic specification No 25100
- RD-2. Proton Irradiation Facility at the PROSCAN project of the Paul Scherrer Institute PIF facility at PSI, Ulrike Grossner, Wojtek Hajdas, Ken Egli, Roger Brun, and Reno Harboe-Sorensen, RADECS 2009.

3 Device Information

Device description

4B4G0846Q, DDR3L SDRAM

Manufacturer:	Samsung
Package:	78-Ball FBGA 11 x 10 mm
Marking:	SEC 510 HYKO K4B4G0846Q EKA3R9A6C, xxxEKA3R9GDC
Date code	1510
Technology:	CMOS
Die dimensions:	7.3 x 8.6 mm

This 4Gb memory is composed of 1 die with 8 banks of 1024 rows by 65536 columns of 8 bits words.

Device and die identification

Figure 1: Package, top.

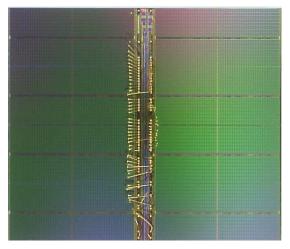


Figure 3: Die view.

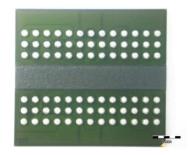


Figure 2: Package, bottom.

Figure 4: Die marking.

4 Test Setup

Figure 5 shows the principle of the single event test system.

The test system is based on a Kintex7 FPGA (Xilinx).

The test board includes 2 slots for high speed and low speed SODDIMM daughter boards on which is mounted one DUT memory.

The test board includes the voltage/current monitoring and the latch-up management of the DUT power supplies up to 24 independent channels.

The communication between the test chamber and the controlling computer is effectively done by a 100 Mbit/s Ethernet link which safely enables high speed data transfer.

One DUT (low speed or high speed) is exposed at a time

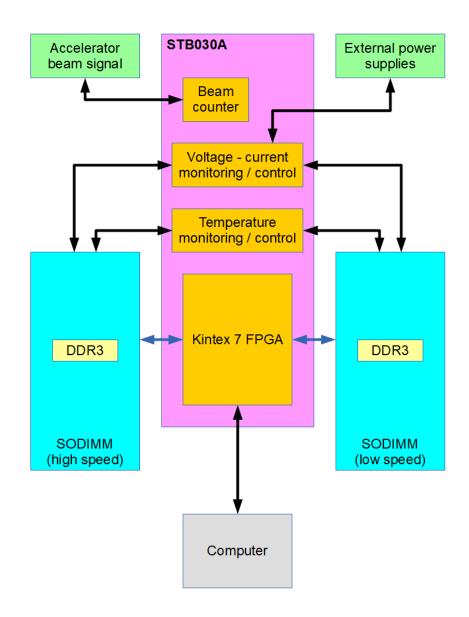


Figure 5: Hirex SEE test setup

5 Test sequence

Low speed mode is performed at a DUT clock frequency of 325MHz while high speed is performed at 700MHz.

Read/Write sequence

- Repeat cycles:
 - Write memory with 0x55 /0xAA
 - Wait 1 s
 - First Read memory (R1)
 - Second Read memory (R2)

6 PIF Test Facility

A description of PIF test facility can be found in RD-2. As shown in Figure 6, proton beam from COMET cyclotron is delivered to the experimental PIF cave with an input energy that can be varied from few MeVs up to 250 MeV. Then in PIF room, local copper degraders can be inserted into the beam to obtain the different user energies.

200 MeV input beam's energy was selected and calibrated. Figure 7 show an example of calibration together with the X and Y beam profiles.

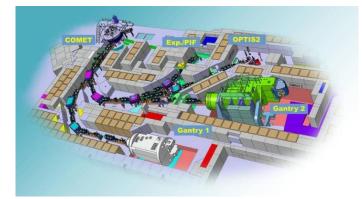


Figure 6 - Proscan facility

E0=200						Target(1)	Degr(2)	Target(1)	Degr(2)	Target(1)	Degr(2)	5.0cm coll	imator	FLUX	IC-curent	IC-deg	PROSCAN	RPOSCAN	FLUX(max)	IC-deg
	Energy	Degr.	Plastic	IC-target	IC-degr	Fac. 20nA	Fac. 20nA	Fac. 200nA	Fac. 200nA	Fac. 2 uA	Fac. 2 uA	PL6		[p/cm/s]	[nA]	[nA]	[nA]	MAX [nA]	[p/cm/s]	[nA]
	[MeV]	[mm]	[cnt/1s]	[cnt/1s]	[cnt/1s]	[p/cnt/cm2]	[p/cnt/cm2]					10cm dista	ance to D	UT-Collimator						
Pos 1	200	0.0	154136	200	67	12844.7	38342.3					i –		2 57E+06	2.00E+00	6 70E-01	1 50E-01	1 00F+01	1.71E+08	4 47E+
1	200	0.0	169632	227	74	12454.6								2.072100	2.002100	0.702 01	1.002 01			
	60mV		10	3	2.7	1.26E+04			3.83E+05	1.26E+06	3.83E+06									
Pos 1	180.3	7.0	163897	232	77	11774.2	35475.5					1		2.73E+06	2.32E+00	7.70E-01	1.50E-01	1.00E+01	1.82E+08	5.13E+
1	180.3	7.0	173136	246	81	11730.1														
	60mV		10	3	2.7	1.18E+04	3.56E+04	1.18E+05	3.56E+05	1.18E+06	3.56E+06									
						1						1								
Pos 1	151.2	16.5	131820	208	68	10562.5	32308.8	1				1		2.20E+06	2.08E+00	6.80E-01	1.50E-01	1.00E+01	1.46E+08	4.53E+0
1	151.2	16.5	151328	240	78	10508.9	32335.0													
-	60mV		10	3	2.7	1.05E+04	3.23E+04	1.05E+05	3.23E+05	1.05E+06	3.23E+06									
Pos 1	125.2	24.0	132028	248	78	8872.8	28211.1							2.20E+06	2.48E+00	7.80E-01	1.50E-01	1.00E+01	1.47E+08	5.20E+0
1	125.2	24.0	126705	239	76	8835.8														
	60mV		10	3	2.7	8.85E+03	2.80E+04	8.85E+04	2.80E+05	8.85E+05	2.80E+06									
Pos 1	101.3	30.0	129616	303	93	7129.6		·						2.16E+06	3.03E+00	9.30E-01	1.50E-01	1.00E+01	1.44E+08	6.20E+0
1	101.3	30.0	115130	267	82	7186.6														
	60mV		10	3	2.7	7.16E+03	2.33E+04	7.16E+04	2.33E+05	7.16E+05	2.33E+06									
Pos 1	75.2	35.5	100278	322	86	5190.4	19433.7					1		4.075.00	3.22E+00	0.005.04	1 505 04		1.11E+08	E 705 (
1	75.2	35.5	100278	322	89	5216.4								1.07E+00	3.22E+00	0.00E-01	1.50E-01	1.00E+01	1.11E+00	5./3E+0
	60mV	35.5	103397	331	2.7	5.20E+03			1.94E+05	5.20E+05	1.94E+06									
	00111		10	5	2.1	5.202403	1.346404	J.20LT04	1.342+0	3.202403	1.342+00									
Pos 1	50.8	39.5	75856	375	84	3371.4	15050.8					1		1.26E+06	3.75E+00	8.40E-01	1.50E-01	1.00E+01	8.43E+07	5.60E+
1	50.8	39.5	69935	342	77	3408.1	15137.4													
	60mV		10	3	2.7	3.39E+03		3.39E+04	1.51E+05	3.39E+05	1.51E+06									
Pos 1	29.3	42.0	42198	462	71	1522.3								7.03E+05	4.62E+00	7.10E-01	1.50E-01	1.00E+01	4.69E+07	4.73E+0
1	29.3	42.0	41396	450	69	1533.2														
	60mV		10	3	2.7	1.53E+03	9.95E+03	1.53E+04	9.95E+04	1.53E+05	9.95E+05									

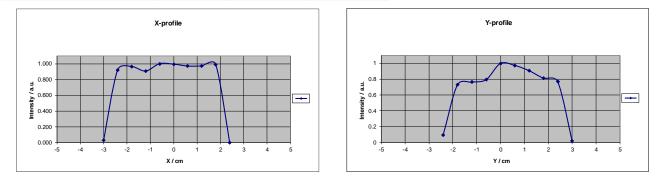


Figure 7 – 200MeV calibration results and beam profile

7 Test conditions.

SEU tests were carried out closed to Vddmin at 1.30V and room temperature.

Each memory present 8 banks of 65536 columns by 1024 rows of 8-bit words.

Each memory plane is traversed by bank, column, row which means that bank0, column0, row 0 to row 1023 is read, then bank0, column1, row 0 to row 1023, etc.

Read is done by burst which corresponds to 8 words. Each time at least 1 word is in error among the 8 words, the burst is recorded.

8 Detailed results

Runs results are summarized in Table 1.

Table 1: Detailed SEE results.

Facility	dut_medium	run_number	Facility_run_number	Test mode	DUT_part_id	power_config	test_mode	run_duration	entered_fluence	Proton energy	capacity	pre run	R1	R1R2	R2	persistent	Cells SEU	Cells SEU cross-section / bit	Column	Row	sefi		Logic errors cross-section / device	post run
PIF	air	44	44	LS	S21	1.3	read write	926	5.00E+10	100	4.29E+09	0	0	5	6	0	11	5.12E-20	0	2	0	2	4.00E-11	0
PIF	air	43	43	LS	S21	1.3	read write	486	1.00E+11	200	4.29E+09	0	0	10	14	0	24	5.59E-20	0	7	0	7	7.00E-11	0
PIF	air	56	55	LS	S22	1.3	read write	1163	5.00E+10	100	4.29E+09	0	0	2	4	1	7	3.26E-20	2	1	0	3	6.00E-11	0
PIF	air	55	54	LS	S22	1.3	read write	545	1.00E+11	200	4.29E+09	0	0	6	9	0	15	3.49E-20	2	7	1	10	1.00E-10	0
PIF	air	53	52	HS	S21	1.3	read write	1089	5.00E+10	100	4.29E+09	0	0	2	4	1	7	3.26E-20	0	2	2	4	8.00E-11	0
PIF	air	48	48	HS	S21	1.3	read write	285	6.17E+10	200	4.29E+09	0	0	3	1	0	4	1.51E-20	0	2	1	3	4.86E-11	0
PIF	air	50	50	HS	S21	1.3	read write	628	1.00E+11	200	4.29E+09	0	0	12	7	0	19	4.42E-20	1	5	0	6	6.00E-11	0
PIF	air	47	47	HS	S22	1.3	read write	976	5.00E+10	100	4.29E+09	0	0	8	6	0	14	6.52E-20	1	4	0	5	1.00E-10	0
PIF	air	46	46	HS	S22	1.3	read write	521	1.00E+11	200	4.29E+09	0	0	13	8	1	22	5.12E-20	1	8	0	9	9.00E-11	0

Pre-run errors

Stuck bits present before exposure. They could have been created during previous runs on the DUT.

<u>R1 bit errors</u>

Number of errors detected during READ1 but not during READ2. None of these errors which represent reading errors have been detected.

R1/R2 bit errors

Number of errors detected during READ1 and during READ2. These errors represent SEU WRITE bit errors or SEU cells errors occurring during the time the cell is not written (as for instance during WAIT step but not only).

R2 bit errors

Number of errors detected during READ2 only: These errors represent reading errors which are expected to be quite few as for R1 bit errors and the SEU cells errors occurring during the time the cell is not read.

Persistent bit errors

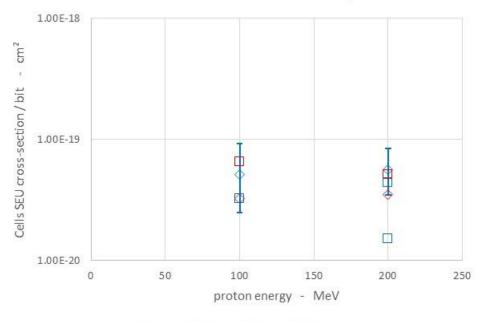
Bit errors that last more than one sequence iteration. Part of these errors can persist up to the end of the run and are then counted as post-run bit errors (stuck bits). Pre-run errors have been subtracted from the persistent bit error count. <u>Colum error</u>

Likely an error in the logic.

Row errors

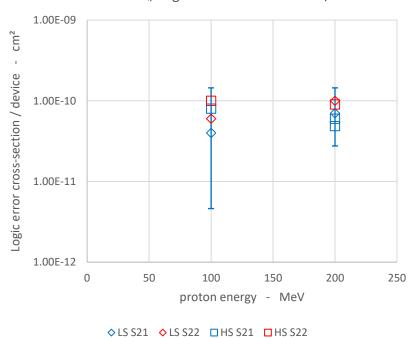
Likely an error in the logic. Consist in a portion of row in error in a bank.

<u>SEFI</u>


These errors consist mainly in column or row errors that persist during several sequence iterations. Majority has been cured by a manual power reset.

Post-run bit errors

The errors are stuck bits. All affected words are single bit upset.


The corresponding cross-section are plot in Figure 8 and Figure 9.

4B4G0846Q Cells SEU cross-section / bit

◇ LS S21 ◇ LS S22 □ HS S21 □ HS S22

4B4G0846Q, Logic errors cross-section / device

Figure 9 – Logic errors cross-section / device plot

SEE Test Report

During Run053 A large error, neither a column nor a row, has been detected and is plot in Figure 10. Same error pattern was also observed with heavy ions and only with Samsung. All addresses in error are single bit error and error transition is always 1->0.

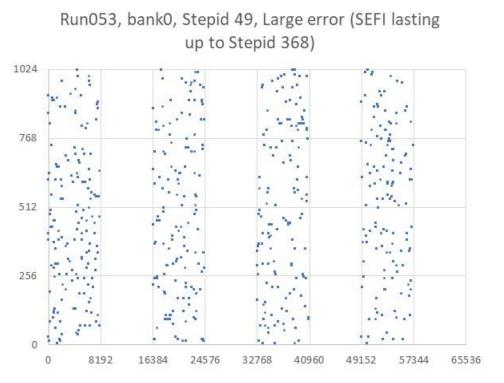


Figure 10 – run053, bank0, stepid 49, error mapping

9 Glossary

DUT: Device under test.

Fluence (of particle radiation incident on a surface): The total amount of particle radiant energy incident on a surface in a given period of time, divided by the area of the surface. In this document, Fluence is expressed in ions per cm².

Flux: The time rate of flow of particle radiant energy incident on a surface, divided by the area of that surface.

In this document, Flux is expressed in ions per cm².s.

Single-Event Effect (SEE): Any measurable or observable change in state or performance of a microelectronic device, component, subsystem, or system (digital or analog) resulting from a single energetic particle strike.

Single-event effects include single-event upset (SEU), multiple-bit upset (MBU), multiple-cell upset (MCU), single-event functional interrupt (SEFI), single-event latch-up (SEL).

Single Event Gate Rupture (SEGR) / **Single Event Dielectric Rupture (**SEDR): Destructive rupture of the gate oxide layer or dielectric layer by a single ion strike. This leads to leakage currents under bias and can be observed as stuck bits in digitals devices

Single-Event Upset (SEU): A soft error caused by the transient signal induced by a single energetic particle strike.

Single-Event Transient (SET): A transient signal induced by a single energetic particle strike.

Single-Event Latch-up (SEL): An abnormal high-current state in a device caused by the passage of a single energetic particle through sensitive regions of the device structure and resulting in the loss of device functionality.

SEL may cause permanent damage to the device. If the device is not permanently damaged, power cycling of the device (off and back on) is necessary to restore normal operation.

An example of SEL in a CMOS device is when the passage of a single particle induces the creation of parasitic bipolar (p-n-p-n) shorting of power to ground.

Single-Event Functional Interrupt (SEFI): A soft error that causes the component to reset, lock-up, or otherwise malfunction in a detectable way, but does not require power cycling of the device (off and back on) to restore operability, unlike single-event latch-up (SEL), or result in permanent damage as in single-event burnout (SEB).

A SEFI is often associated with an upset in a control bit or register.

Error cross-section: the number of errors per unit fluence. For device error cross-section, the dimensions are cm² per device. For bit error cross-section, the dimensions are cm² per bit.

Tilt angle: tilt angle, rotation axis of the DUT board is perpendicular to the beam axis; roll angle, board rotation axis is parallel to the beam axis

Weibull fit: $F(x) = A (1 - exp\{-[(x-x_0)/W]^s\})$ with:

 $\begin{array}{l} x = \text{effective LET in MeV/(mg/cm^2)}; \\ F(x) = \text{SEE cross-section in cm}^2; \\ A = \text{limiting or plateau cross-section}; \\ x_0 = \text{onset parameter, such that } F(x) = 0 \text{ for } x < x_0; \\ W = \text{width parameter}; \\ s = a \text{ dimensionless exponent.} \end{array}$

Error bars: error bars are computed using a confidence level of 95% and a beam flux uncertainty of +/-10% as recommended by Single Event Effects Test method and Guidelines ESA/SCC basic specification No 25100.