HEAVY IONS TEST REPORT TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Labège, 09 September, 2015 TRAD, Bât Gallium 907, Voie l'Occitane - 31670 LABEGE France 2: 05 61 00 95 60 Fax: 05 61 00 95 61 Tests & radiations Email: trad@trad.fr Web Site: www.trad.fr SIRET 397 862 038 00056 - TVA FR59397862038 Written by Verified by / Quality control Approved by **B.VANDEVELDE** A. SAMARAS A. VAROTSOU 09/09/2015 21/09/2015 01/10/2015 Revision: 1 Project/Program: TID influence on the SEE **ESA** sensitivity of active EEE Components To: Marc POIZAT Ref: ESTEC Contract No.4000111336 AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### **CONTENTS** | 1. | . Introduction | 4 | |----|--|----| | 2. | . Documents | 4 | | | 2.1. Applicable documents | 4 | | | 2.2. Reference documents | 4 | | 3. | . Organization of Activities | 4 | | 4. | Parts information | 5 | | | 4.1. Device description | 5 | | | 4.2. Identification | 5 | | | 4.3. Procurement information | 5 | | | 4.4. Sample Preparation | 5 | | | 4.5. Sample pictures | 6 | | | 4.5.1. External view | 6 | | | 4.5.2. Internal view | 6 | | 5. | . Dosimetry and Irradiation Facilities | 7 | | | 5.1. UCL Heavy Ion Test Facility (Université Catholique de Louvain - Belgique) | 7 | | | 5.2. Dosimetry | 7 | | | 5.3. Beam characteristics | 8 | | 6. | . Test Procedure and Setup | 9 | | | 6.1. Test procedure | 9 | | | 6.1.1. Description of the test method | 9 | | | 6.1.2. SEL Test Principle | 9 | | | 6.1.3. SET and SEFI Test Principle | 10 | | | 6.2. Test bench description | 11 | | | 6.2.1. Preparation of test hardware and program | 11 | | | 6.2.2. Test equipment identification | 11 | | | 6.2.3. Test Bench description | 12 | | | 6.2.4. Device setup and Test conditions | 12 | | 7. | . Test Story | 13 | | 8. | . RESULTS | 14 | | | 8.1. Summary of runs | 14 | | | 8.2. SEL test results | 15 | | | 8.2.1. SEL Cross sections | 15 | | | 8.3. SEE tests results | 15 | | | 8.3.1. SET Cross sections | 15 | | | 8.3.2. Worst Cases SET Observed | 16 | | | 8.4. SEFI test results | 18 | | | 8.4.1. SEFI Cross sections | 18 | | 9 | Conclusion | 19 | AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### **FIGURES** | Figure 1: Package marking | 6 | |--|----| | Figure 2: Internal overall view | | | Figure 3: Die marking | 6 | | Figure 4: Common SEL characteristic. | 9 | | Figure 5: Positive and negative SET detection | 10 | | Figure 6: Test system description | 12 | | Figure 7: Test board schematic | 13 | | Figure 8: SET_1 configuration SET cross section curve for AD558JNZ | 16 | | Figure 9: Positive SET curve, Heavy Ion ⁸³ Kr ²⁵⁺ (LET: 32.6MeV.mg/cm ²), Part 4, Run n°11, Event n°71 | 16 | | Figure 10: Negative SET curve, Heavy Ion ¹²⁴ Xe ²⁶⁺ (LET: 67.7MeV.mg/cm ²), Part 2, Run n°5, Event n°643 | 17 | | Figure 11: Double SET curve, Heavy Ion ¹²⁴ Xe ²⁶⁺ (LET: 67.7MeV.mg/cm ²), Part 2, Run n°5, Event n°840 | 17 | | TABLES | | | Table 1: Organization of activities | 4 | | Table 2: UCL cocktail M/Q=5 | 8 | | Table 3: UCL cocktail M/Q=3.3 | 8 | | Table 4: static SET detection threshold | | | Table 5: SEL detection threshold | | | Table 6: AD558JNZ test results | | | Table 7: AD558JNZ SEL cross section results | | | Table 8: AD558JNZ SET_1 configuration SET cross section results | 15 | AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 1. Introduction This report includes the test results of the heavy ions Single Event Effects (SEEs) test sequence carried out on the AD558JNZ, a Voltage-Output 8-Bit Digital-to-Analog Converter from Analog Devices. This test was performed for **ESA** at U.C.L (Université Catholique de Louvain, Louvain la Neuve, Belgium) on October 27th and 28th, 2014. Six samples were irradiated. This test was performed for **ESA** on the **AD558JNZ** susceptible to show Single Event Latchups (SELs) Single Event Transients (SETs) and Single Event Functional Interrupt (SEFIs) induced by heavy ions. This test was performed as a part of a global study to evaluate the potential synergetic effects of TID on SEE sensitivity (ESTEC Contract No.4000111336/14/NL/SW). As a result, the development strategy for this test was not the characterization of the AD558JNZ itself, but the evolution of its SEE sensitivity after submission to TID. The results presented in this report were obtained before TID irradiation (0 krad). ### 2. Documents ### 2.1. Applicable documents Financial and technical proposal: TRAD/P/ESA/AO7751/AV/130214 Rev.0 Irradiation test plan: ITP/TRA/TE/AD558/XXX/AD/240714 issue 2 of 15/10/2014 #### 2.2. Reference documents Data-sheet: AD558 Datasheet from Analog Devices Rev. A ### 3. Organization of Activities The relevant company has performed the following tasks during this evaluation: | 1 | Procurement of Test Samples | TRAD | |---|---|------| | 2 | Preparation of Test Samples (delidding) | TRAD | | 3 | Preparation of Test Hardware and Test Program | TRAD | | 4 | Samples Check | TRAD | | 5 | Accelerator Test | TRAD | | 6 | Heavy Ion Test Report | TRAD | **Table 1: Organization of activities** AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 4. Parts information ### 4.1. Device description The AD558 DAC is a complete voltage-output 8-bit digital-to-analog converter, including output amplifier, full microprocessor interface and precision voltage reference on a single monolithic chip. No external components or trims are required to interface, with full accuracy, an 8-bit data bus to an analog system. #### 4.2. Identification | Type: | AD558JNZ | |---------------|--| | Manufacturer: | Analog Devices | | Function: | Voltage-Output 8-Bit Digital-to-Analog Converter | #### 4.3. Procurement information | Package | DIL-16 | |--------------|---------------------------| | Date code | 1116 | | | | | Sample size: | 10 parts procured by TRAD | ### 4.4. Sample Preparation All parts were delidded by TRAD. No sample was damaged during this operation. A functional test sequence was performed on delidded samples to check that devices were not degraded by the delidding operation. Among the 10 delidded samples available for the test campaign, 6 were irradiated and 4 were not used. AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 4.5. Sample pictures ### 4.5.1. External view No marking was observed at the bottom of the package. Figure 1: Package marking ### 4.5.2. Internal view Figure 2: Overall internal view Figure 3: Die marking AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 5. Dosimetry and Irradiation Facilities The test performed at U.C.L (Université Catholique de Louvain) on October 27th and 28th, 2014. 6 delidded samples were irradiated. ### 5.1. UCL Heavy Ion Test Facility (Université Catholique de Louvain - Belgique) The CYClotron of LOuvain la NEuve (CYCLONE) is a multi-particle, variable energy, cyclotron capable of accelerating protons (up to 85 MeV), alpha particles and heavy ions. For the heavy ions, the covered LET range is between 1.2 MeV.cm².mg⁻¹ and 67.7 MeV.cm².mg⁻¹. Heavy ions available are separated in two "Ion Cocktails" named M/Q=5 and M/Q=3.3. One of the main advantages of the UCL Heavy Ion Test Facility is the fast changing of ion species. Within the same cocktail, it takes only a few minutes to change from one ion to another. The chamber has the shape of a barrel stretched vertically; its internal dimensions are 71 cm in height, 54 cm in width and 76 cm in depth. One side flange is used to support the board frame (25 X 25 cm) and user connectors. The chamber is equipped with a vacuum system. #### 5.2. Dosimetry To control and monitor the beam parameters, a dosimetry box is placed in front of the chamber. It contains a faraday cup, 2 Parallel Plate Avalanche Counters (PPAC). Two additional surface barrier detectors are placed in the test chamber. The faraday cup is used during beam preparation at high intensity. A beam uniformity measurement is performed with a collimated surface barrier detector. This detector is placed on a X and Y movement. The final profile is drawn and the \pm 10 % width is calculated. The Homogeneity is \pm 10 % on a 25 mm diameter. During the irradiation, the flux is integrated in order to give the delivered total fluence (particule.cm⁻²) on the device. AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 5.3. Beam characteristics The beam flux is variable between a few particles $s^{-1}cm^{-2}$ and $1.8 \cdot 10^4 s^{-1}cm^{-2}$ depending on the device sensitivity. Available heavy ion characteristics are listed in the following tables (heavy ions used during the experiment are highlighted in yellow): | lon | Energy | Range | LET | |----------------------------------|--------|----------|--| | lon | (MeV) | (µm(Si)) | (MeV.cm ² .mg ⁻¹) | | ¹⁵ N ³⁺ | 60 | 59 | 3.3 | | ²⁰ Ne ⁴⁺ | 78 | 45 | 6.4 | | ⁴⁰ Ar ⁸⁺ | 151 | 40 | 15.9 | | ⁸⁴ Kr ¹⁷⁺ | 305 | 39 | 40.4 | | ¹²⁴ Xe ²⁵⁺ | 420 | 37 | 67.7 | Table 2: UCL cocktail M/Q=5 | la.a | Energy | Range | LET | |---------------------------------|--------|----------|--| | lon | (MeV) | (μm(Si)) | (MeV.cm ² .mg ⁻¹) | | ¹³ C ⁴⁺ | 131 | 292 | 1.1 | | ²² Ne ⁷⁺ | 235 | 216 | 3 | | ⁴⁰ Ar ¹²⁺ | 372 | 117 | 10.2 | | ⁵⁸ Ni ¹⁸⁺ | 567 | 100 | 20.4 | | ⁸³ Kr ²⁵⁺ | 756 | 92 | 32.6 | Table 3: UCL cocktail M/Q=3.3 AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 6. Test Procedure and Setup ### 6.1. Test procedure #### 6.1.1. Description of the test method The test was divided in two parts, with respect to reference or applicable documents: - Runs were performed up to a fluence of 1.10⁷ cm⁻² with only SEL monitoring. This configuration allowed to verify the latchup sensitivity of the device. - Runs were performed up to a fluence of 1.10⁶ cm⁻² for the SET, and SEFI detection. A latchup monitoring was used during these tests in order to protect the component. This configuration allowed to verify the SET and SEFI sensitivity of the device. The test was terminated when the maximum fluence was reached or when about a hundred events were recorded. ### **6.1.2. SEL Test Principle** The test was performed at nominal operating voltage and ambient temperature. TRAD has developed a fully integrated test bench to perform Single Event Latchup tests (SEL). The GUARD system (Graphical Universal Autorange Delatcher) allows the user to easily protect his device under test and perform SEL characterization. The power supply is applied to the device under test through the GUARD system. The threshold current of the GUARD system is set according to the nominal current. If the nominal current exceeds the threshold current, the GUARD system is triggered and the event is counted as an SEL. Then, the GUARD system sends a trigger command to the oscilloscope, maintains the power supply during a defined 'Time hold' and cuts it off during a defined 'Time cut'. Then, the power supply is restarted with the nominal current consumption. At the end of each run, the test program reads the oscilloscope's "Local Scope Counter" which represents the total event count and downloads the recorded current waveforms to store them. Figure 4 shows an example of the SEL detection. Figure 4: Common SEL characteristic. AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 6.1.3. SET and SEFI Test Principle The GUARD system is always used on the component's power supply to detect SEL and to prevent the destruction of the device under test. Single Event Transient is an event described by a voltage amplitude and a timing parameter. To detect these events, the output voltage of the component is monitored. A set of digital inputs: quarter, half and three-quarter of the input range is used to evaluate the least sensitive configuration. These configurations are respectively noted as SET_1, SET_2 and SET_3. For all these configurations, the DUT operates in "Transparent latch" mode, where no conversion clock is required at CE or CS input pins, thus allowing direct access to the DAC. The least sensitive configuration is then maintained for the remaining tests. SET can be positive or negative. Two trigger thresholds (positive and negative) are used to detect the amplitude voltage due to SET. An SET is detected when the output device voltage becomes higher or lower than the positive trigger threshold or the negative trigger threshold respectively. During the test, the oscilloscope's internal counter is incremented at each detected SET and the waveform of each transient is stored. Figure 5: Positive and negative SET detection The lower threshold for the SET detection is set to "Vout - 20 LSB" and the higher threshold is set to "Vout + 20 LSB". A voltmeter is used to detect Single Event Functional Interrupt. In this case the lower threshold for the SEFI detection is set to "Vout - 10 LSB" and the higher threshold is set to "Vout + 10 LSB". A SEFI is taken into account if Vout stays out of these limits during more than 100ms. When a SEFI occurs the DAC is power cycled OFF-ON. At the end of each run, the test program reads the oscilloscope's "Local Scope Counter" which represents the total event count and downloads the recorded current waveforms to store them. AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 6.2. Test bench description ### 6.2.1. Preparation of test hardware and program TRAD has developed a specific test program and a specific motherboard to feed power supply to components. The output of the DUT is visualized using an oscilloscope and curves are saved when an event occurs. The test system is driven by a personal computer through a standard IEEE488 communication interface. All signals are delivered and monitored by this equipment and SEE curves are saved in its memory. At the end of each test run, data is transferred to the hard disk for storage. An overall description of the test system is given in Figure 6. Before performing the heavy ion test, the whole system (delidded sample, test board and software) was assembled and tested by TRAD in V.A.S.C.O (Vacuum System for Californium Operation). ### 6.2.2. Test equipment identification The tests were carried out with evaluation test boards developed by TRAD. | COMPUTER | PO-TE-097 | |-----------------|--| | REF. TEST BOARD | TRAD/CT1/I/AD558/DIL16/LS/1407 | | EQUIPMENT | ME-79, MI-60, GR-53, SM-92 | | TEST PROGRAM | AD558_TI_XXX1_SEL_V10.spf
AD558_TI_XXX1_SEU_V20.spf | AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 6.2.3. Test Bench description Figure 6: Test system description ### 6.2.4. Device setup and Test conditions Trigger thresholds for SET test are defined in the following table: | Vcc | | 5V | | |----------------------------|-------|-------|-------| | Configuration | SET_1 | SET_2 | SET_3 | | V _{out} | 0.51 | 1.27 | 2.04 | | Positive trigger threshold | 0.71 | 1.47 | 2.24 | | Negative trigger threshold | 0.31 | 1.07 | 1.84 | Table 4: static SET detection threshold Trigger threshold for SEL test is defined in the following table: | Vcc | 5V | |------------------------|------| | I _{nominal} | 15mA | | I _{threshold} | 20mA | | T _{hold} | 1ms | | T _{cut} | 7ms | | Temperature | 25°C | **Table 5: SEL detection threshold** AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 Figure 7: Test board schematic ### 7. Test Story Test sequence, test and measurement conditions were nominal. AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 8. RESULTS ### 8.1. Summary of runs. Runs performed during this campaign are summarized in the following table. Tests results are described in the following chapter. | | AD558JNZ
Vcc = 5V
T= 25°C | | | | | | | | | LATO | CHUP | | Si | EE | | | | |-----|---------------------------------|--------|-----------|-----------------|---------------|-------------------------|--|-------------|---|--------------------|-----------------------------|-----|------------------|-----|------------------|------|------------------| | Run | Part | Config | lon | Energy
(MeV) | Range
(µm) | LET
(MeV.cm²/
mg) | Flux (φ)
(cm ⁻² .s ⁻¹) | Time
(s) | Run Fluence
(Φ)
(cm ⁻²) | Run
Dose (krad) | Cumulated
Dose
(krad) | Vcc | Cross
Section | SET | Cross
Section | SEFI | Cross
Section | | | | | | | | | | High LI | ET M/Q=5 | | | | | | • | | | | 1 | 1 | SEL | 124Xe 26+ | 420 | 37 | 67.7 | 8.61E+03 | 1163 | 1.00E+07 | 10.848 | 10.848 | 0 | <1.00E-07 | - | - | - | - | | 2 | 2 | SEL | 124Xe 26+ | 420 | 37 | 67.7 | 1.01E+04 | 996 | 1.00E+07 | 10.845 | 10.845 | 0 | <1.00E-07 | - | - | - | - | | 3 | 2 | SET_2 | 124Xe 26+ | 420 | 37 | 67.7 | 1.03E+03 | 142 | 1.47E+05 | 0.159 | 11.004 | 0 | /\$\\$2\-06/ | | <6.82€-06 | | | | 4 | 2 | SET_2 | 124Xe 26+ | 420 | 37 | 67.7 | 1.03E+03 | 86 | 8.86E+04 | 0.096 | 11.100 | 0 | <1.13E-05 | 102 | 1.15E-03 | 0 | <1.13E-05 | | 5 | 2 | SET_1 | 124Xe 26+ | 420 | 37 | 67.7 | 1.29E+03 | 778 | 1.00E+06 | 1.086 | 12.186 | 0 | <1.00E-06 | 987 | 9.84E-04 | 0 | <1.00E-06 | | 6 | 2 | SET_3 | 124Xe 26+ | 420 | 37 | 67.7 | 1.51E+03 | 52 | 7.88E+04 | 0.085 | 12.272 | 0 | <1.27E-05 | 116 | 1.47E-03 | 0 | <1.27E-05 | | 7 | 1 | SET_2 | 124Xe 26+ | 420 | 37 | 67.7 | 1.53E+03 | 93 | 1.42E+05 | 0.154 | 11.002 | 0 | <7.03E-06 | 209 | 1.47E-03 | 0 | <7.03E-06 | | 8 | 1 | SET_1 | 124Xe 26+ | 420 | 37 | 67.7 | 1.55E+03 | 646 | 1.00E+06 | 1.085 | 12.087 | 0 | <1.00E-06 | 964 | 9.62E-04 | 0 | <1.00E-06 | | 9 | 1 | SET_1 | 84 Kr 17+ | 305 | 39 | 40.4 | 1.54E+03 | 80 | 1.23E+05 | 0.080 | 12.167 | 0 | <8.10E-06 | 101 | 8.18E-04 | 0 | <8.10E-06 | | 10 | 2 | SET_1 | 84 Kr 17+ | 305 | 39 | 40.4 | 1.54E+03 | 90 | 1.38E+05 | 0.089 | 12.361 | 0 | <7.23E-06 | 104 | 7.52E-04 | 0 | <7.23E-06 | | | | | | | | | | | ge M/Q=3.3 | | | | | | | | | | 11 | 4 | SET_1 | 83 Kr 25+ | 756 | 92 | 32.6 | 1.53E+03 | 112 | 1.71E+05 | 0.089 | 0.089 | 0 | <5.84E-06 | 113 | 6.60E-04 | 0 | <5.84E-06 | | 12 | 5 | SET_1 | 83 Kr 25+ | 756 | 92 | 32.6 | 1.54E+03 | 71 | 1.09E+05 | 0.057 | 0.057 | 0 | <1.00E-05 | 105 | 9.60E-04 | 0 | <1.00E-05 | | 13 | 6 | SET_1 | 83 Kr 25+ | 756 | 92 | 32.6 | 1.50E+03 | 117 | 1.76E+05 | 0.092 | 0.092 | 0 | <5.69E-06 | 103 | 5.86E-04 | 0 | <5.69E-06 | | 14 | 6 | SET_1 | 40 Ar 12+ | 372 | 117 | 10.2 | 1.82E+03 | 231 | 4.20E+05 | 0.068 | 0.160 | 0 | <2.38E-06 | 101 | 2.41E-04 | 0 | <2.38E-06 | | 15 | 4 | SET_1 | 40 Ar 12+ | 372 | 117 | 10.2 | 2.23E+03 | 214 | 4.77E+05 | 0.078 | 0.167 | 0 | <2.10E-06 | 100 | 2.10E-04 | 0 | <2.10E-06 | | 16 | 4 | SET_1 | 13 C 4+ | 131 | 292 | 1.1 | 3.74E+03 | 269 | 1.01E+06 | 0.018 | 0.185 | 0 | <1.00E-06 | 0 | <1.00E-06 | 0 | <1.00E-06 | | 17 | 6 | SET_1 | 13 C 4+ | 131 | 292 | 1.1 | 5.17E+03 | 195 | 1.01E+06 | 0.018 | 0.178 | 0 | <1.00E-06 | 0 | <1.00E-06 | 0 | <1.00E-06 | | 18 | 6 | SET_1 | 22 Ne 7+ | 235 | 216 | 3 | 5.15E+03 | 196 | 1.01E+06 | 0.048 | 0.226 | 0 | <1.00E-06 | 12 | 1.19E-05 | 0 | <1.00E-06 | | 19 | 4 | SET_1 | 22 Ne 7+ | 235 | 216 | 3 | 5.14E+03 | 196 | 1.01E+06 | 0.048 | 0.233 | 0 | <1.00E-06 | 14 | 1.39E-05 | 0 | <1.00E-06 | | 20 | 4 | SET_1 | 58 Ni 18+ | 567 | 100 | 20.4 | 2.54E+03 | 59 | 1.50E+05 | 0.049 | 0.282 | 0 | <6.67E-06 | 102 | 6.80E-04 | 0 | <6.67E-06 | | 21 | 6 | SET_1 | 58 Ni 18+ | 567 | 100 | 20.4 | 2.50E+03 | 66 | 1.65E+05 | 0.054 | 0.280 | 0 | <6.06E-06 | 101 | 6.12E-04 | 0 | <6.06E-06 | Table 6: AD558JNZ test results No SEL or SEFI were detected during this test. SET events were detected during this test. AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 #### 8.2. SEL test results. The SEL test was performed at 25°C. No SEL was observed during this test under Xenon irradiation with a total fluence equal to 1E+7 cm⁻² with a particle angle of 0° (LET = 67.7 MeV.cm²/mg and range = 37μ m). #### 8.2.1. SEL Cross sections | LET | AD558JNZ SEL Cross Section (cm ²) | | | | | | | |--|---|-----------|--|--|--|--|--| | (MeV.cm ² .mg ⁻¹) | N°1 N°2 | | | | | | | | 67.7 | <1.00E-07 | <1.00E-07 | | | | | | Table 7: AD558JNZ SEL cross section results #### 8.3. SEE tests results The SEE test was performed at 25°C. The three tested configurations did not present a difference of sensitivity at Xenon Heavy Ion, LET = 67.7 MeV.cm²/mg. Configuration SET_1 was selected to perform SET tests. SETs were observed during the irradiation down to the Neon Heavy Ion (LET = 3 MeV.cm²/mg). #### 8.3.1. SET Cross sections | AD558JNZ SET_1 configuration SET Cross Section (cm ²) | | | | | | |---|----------|----------|----------|----------|----------| | LET Eff | SET | | | | | | (MeV.cm².mg ⁻¹) | N° 1 | N° 2 | N°4 | N° 5 | N° 6 | | 67.7 | 9.62E-04 | 9.84E-04 | - | - | - | | 40.4 | 8.18E-04 | 7.52E-04 | - | - | - | | 32.6 | - | - | 6.60E-04 | 9.60E-04 | 5.86E-04 | | 20.4 | - | - | 6.80E-04 | 1 | 6.12E-04 | | 10.2 | - | - | 2.10E-04 | 1 | 2.41E-04 | | 3 | - | - | 1.39E-05 | - | 1.19E-05 | | 1.1 | - | - | <1E-06 | - | <1E-06 | Table 8: AD558JNZ SET_1 configuration SET cross section results The following figures present the cross section of the SET event on Vout on the AD558JNZ part on SET_1 configuration. Points represented by an arrow pointing down indicate that no events were observed at the corresponding LET. The evaluated cross section is then lower than $1.00\ 10^{-6} \text{cm}^{-2}$, value corresponding to one event at maximum fluence. Error bars are calculated as described in the ESCC25100, using 95% confidence level and 10% fluence uncertainty. AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 Figure 8: SET_1 configuration SET cross section curve for AD558JNZ ### 8.3.2. Worst Cases SET Observed Three different types of SET were observed, positive SET, negative SET and double SET. The worst positive SET case occurs on Part N°4 during run n°11 event n°71 (Kr, 32.6 MeV.cm²/mg). Figure 9: Positive SET curve, Heavy Ion 83Kr25+ (LET: 32.6MeV.mg/cm2), Part 4, Run n°11, Event n°71 The worst negative SET case occurs on Part N°2 during run n°5 event n°643 (Xe, 67.7 MeV.cm²/mg). AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 Figure 10: Negative SET curve, Heavy Ion ¹²⁴Xe²⁶⁺ (LET: 67.7MeV.mg/cm²), Part 2, Run n°5, Event n°643 The worst double SET case occurs on Part N°2 during run n°5 event n°840 (Xe, 67.7 MeV.cm²/mg). Figure 11: Double SET curve, Heavy Ion ¹²⁴Xe²⁶⁺ (LET: 67.7MeV.mg/cm²), Part 2, Run n°5, Event n°840 AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 8.4. SEFI test results. The SEFI test was performed at 25°C. No SEFI was observed during this test under Xenon irradiation with a total fluence equal to 1E+6 cm⁻² with a particle angle of 0° (LET = 67.7 MeV.cm²/mg and range = 37μ m). ### 8.4.1. SEFI Cross sections | LET | SEFI Cross Section (cm ²) | | | |--|---------------------------------------|-----------|--| | (MeV.cm ² .mg ⁻¹) | N°1 | N°2 | | | 67.7 | <1.00E-06 | <1.00E-06 | | Table 9: AD558JNZ SEFI cross section results AD558JNZ (DC1116) Ref: TRAD/TI/AD558JNZ/1116/ESA/LG/1409 Date: 09 September 2015 Rev: 1 ### 9. Conclusion Heavy ion tests were performed on AD558JNZ to evaluate the sensitivity of the device versus SEL, SET and SEFI. This test was performed as a part of a global study to evaluate the potential synergetic effects of TID on SEE sensitivity (ESTEC Contract No.4000111336/14/NL/SW). As a result, the development strategy for this test was not the characterization of the AD558JNZ itself, but the evolution of its SEE sensitivity after submission to TID. The results presented in this report were obtained before TID irradiation (0 krad). No SELs were observed with the LET value of 67.7MeV.cm²/mg (Xenon heavy ions). No SEFIs were observed with the LET value of 67.7MeV.cm²/mg (Xenon heavy ions). SETs were observed on the AD558JNZ with a minimum LET of 3 MeV.cm²/mg (Neon heavy ions). No SET was detected with a LET of 1.1 MeV.cm²/mg (Carbon heavy ions).