## ESA STUDY CONTRACT REPORT

No ESA Study Contract Report will be accepted unless this sheet is inserted at the beginning of each volume of the Report.

| ESA Contract No:     | SUBJI                                       | ECT:                                                                                                          | CONTRACTOR:                                                        |  |  |  |  |  |
|----------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|
| 4000105666/12/NL/SFe | COO5:<br>of RHF<br>MOSF<br>Testin<br>from S | Heavy Ion SEE Testing<br>PM4424 Iow side<br>ET driver and SEB/SEGR<br>g of power MOSFET<br>STmicroelectronics | TRAD                                                               |  |  |  |  |  |
| * ESA CR()No:        |                                             | No. of Volumes: <b>1</b><br>This is Volume No: <b>1</b>                                                       | CONTRACTOR'S REFERENCE:<br>trad/ti/rhfpm4424/xxx1/esa/apd/1405Rev1 |  |  |  |  |  |

## ABSTRACT:

This document is **deliverable D3: RHFPM4424 Test Report**, under the Frame Contract 4000105666 with ESA on the Radiation Characterisation of Commercial EEE Components for Space Applications and more specifically on the fifth Call-of-Order for the Heavy-ion SEE Testing of RHFPM4424 low side MOSFET driver.

This report includes the test results of the heavy ions Single Event Effects (SEEs) test sequence carried out on the RHFPM4424, a Rad-Hard 4.5A Dual Low Side MOSFET driver from STMicroelectronics. This test was performed for ESA at U.C.L. (Université Catholique de Louvain, Belgium) on July 10<sup>th</sup> till 12<sup>th</sup>, 2014 for which 15 samples were irradiated. The ESA Technical Officer, Christian Poivey, participated in the test campaign. The main objective of this test was to investigate on the sentivitivy of the RHFPM4424 versus Single Event Transients (SETs) and Single Event Burn-outs (SEBs) induced by heavy ions with different incidence angles.

SETs were observed on the RHFPM4424 under the Xenon and the Krypton Heavy Ion for all Tilt of each Roll (LET value from 46.1 MeV.cm<sup>2</sup>.mg-1 to 105.32 MeV.cm<sup>2</sup>.mg-1), and for all Power Supply (VCC from +15V to +19V)

For VCC=+18V, no SEB was observed for an LET value of 56.84 MeV.cm<sup>2</sup>.mg-1 (Krypton heavy ions with 55° of Tilt).

For VCC=+16V, no SEB was observed for an LET value of 70.09 MeV.cm<sup>2</sup>.mg-1 (Xenon heavy ions with 15° of Tilt).

For VCC=+16V, no SEB was observed for an LET value of 71.83 MeV.cm<sup>2</sup>.mg-1 (Krypton heavy ions with 63° of Tilt).

The work described in this report was done under ESA Contract. Responsibility for the contents resides in the author or organisation that prepared it.

Names of authors: Maxime VAILLE

\*\* NAME OF ESA STUDY MANAGER:

\*\* ESA BUDGET HEADING:

**Christian POIVEY** 

DIV: Space Materials & Components Evaluation

DIRECTORATE: Technical & Quality Management

\* Sections to be completed by ESA

\*\* Information to be provided by ESA Study Manager

# HEAVY IONS TEST REPORT



| TRAD/                                                              | /TI/RHFPM4424,   | /XXX1/ESA/APD/1405               | Labège, 08 August 2014                                                                                                                                                                                        |  |  |  |  |  |  |
|--------------------------------------------------------------------|------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Tests &                                                            | Radiation        | S Qualité<br>Arnor certification | TRAD, Bât Gallium   907, Voie l'Occitane - 31670 LABEGE France <sup>∞</sup> : 05 61 00 95 60 Fax: 05 61 00 95 61    Email: trad@trad.fr   Web Site: www.trad.fr   SIRET 397 862 038 00056 - TVA FR59397862038 |  |  |  |  |  |  |
| Writ                                                               | ten by           | Verified by / Quality<br>control | Approved by                                                                                                                                                                                                   |  |  |  |  |  |  |
| M. V<br>08/08                                                      | /AILLÉ<br>8/2014 | P. GARCIA<br>08/08/2014          | A. VAROTSOU<br>08/08/2014                                                                                                                                                                                     |  |  |  |  |  |  |
| Revision: 0                                                        | Document cr      | eated                            | 22/07/2014                                                                                                                                                                                                    |  |  |  |  |  |  |
| Revision: 1 Table 4 updated and description added for Tables 5 & 6 |                  |                                  |                                                                                                                                                                                                               |  |  |  |  |  |  |
| ES/                                                                | 4                |                                  | Project/Program: COO5                                                                                                                                                                                         |  |  |  |  |  |  |
| PO                                                                 | IVEY Christian   |                                  | Ref: ESA contract 4000105666                                                                                                                                                                                  |  |  |  |  |  |  |



Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1

## **CONTENTS**

| 1. Intro | duction                                                                   | 4  |
|----------|---------------------------------------------------------------------------|----|
| 2. Docu  | iments                                                                    | 4  |
| 2.1.     | Applicable documents                                                      | 4  |
| 2.2.     | Reference documents                                                       | 4  |
| 3. Orga  | nization of Activities                                                    | 4  |
| 4. Parts | information                                                               | 5  |
| 4.1.     | Device description                                                        | 5  |
| 4.2.     | Identification                                                            | 5  |
| 4.3.     | Procurement information                                                   | 5  |
| 4.4.     | Sample Preparation                                                        | 5  |
| 4.5.     | Sample pictures                                                           | 6  |
| 4.5.1    | . External view                                                           | 6  |
| 4.5.2    | . Internal view                                                           | 6  |
| 5. Dosir | metry and Irradiation Facilities                                          | 7  |
| 5.1.     | UCL Heavy Ion Test Facility (Université Catholique de Louvain - Belgique) | 7  |
| 5.2.     | Dosimetry                                                                 | 8  |
| 5.3.     | Beam characteristics                                                      | 8  |
| 6. Test  | Procedure and Setup                                                       | 8  |
| 6.1.     | Test procedure                                                            | 8  |
| 6.1.1    | . Description of the test method                                          | 8  |
| 6.1.2    | . SET Test Principle                                                      | 9  |
| 6.1.3    | . SEB Test Principle                                                      | 9  |
| 6.2.     | Test bench description1                                                   | L0 |
| 6.2.1    | . Preparation of test hardware and program1                               | 10 |
| 6.2.2    | . Test Bench description 1                                                | 10 |
| 6.2.3    | . Test equipment identification 1                                         | 11 |
| 7. RESU  | ILTS                                                                      | 11 |
| 7.1.     | Summary of runs1                                                          | 11 |
| 7.2.     | SEB tests results 1                                                       | ٤4 |
| 7.2.1    | . Description of events observed1                                         | 14 |
| 7.3.     | SET test results1                                                         | L7 |
| 7.3.1    | . Worst Cases SET Observed 1                                              | 18 |
| 8. Conc  | lusion                                                                    | 20 |



Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1

## **FIGURES**

| Figure 1: package marking                                                                                                       | 6  |
|---------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2: Internal overall view                                                                                                 | 6  |
| Figure 3: Die marking                                                                                                           | 7  |
| Figure 4: Rolls schematic description                                                                                           | 9  |
| Figure 5: Output signal in dynamic mode                                                                                         | 9  |
| Figure 6: test system description 1                                                                                             | .0 |
| Figure 7: Test board schematic 1                                                                                                | .1 |
| Figure 8: Power Supply monitoring, VCC=+18V, Roll 0, Heavy Ion <sup>83</sup> Kr <sup>25+</sup> , Tilt 58°, Part 8, Run n°25 1   | 15 |
| Figure 9: Power Supply monitoring, VCC=+18V, Roll 0, Heavy Ion <sup>83</sup> Kr <sup>25+</sup> , Tilt 60°, Part 11, Run n°40 1  | 15 |
| Figure 10: Power Supply monitoring, VCC=+18V, Roll 0, Heavy Ion <sup>83</sup> Kr <sup>25+</sup> , Tilt 63°, Part 11, Run n°41 1 | 6  |
| Figure 11: SEB_1, VCC=+18V, Roll 0, Heavy Ion <sup>83</sup> Kr <sup>25+</sup> , Tilt 58°, Part 8, Run n°25                      | .6 |
| Figure 12: SEB_2, VCC=+18V, Roll 0, Heavy Ion <sup>83</sup> Kr <sup>25+</sup> , Tilt 63°, Part 11, Run n°41                     | .7 |
| Figure 13: SET_1, VCC=+16V, Roll 0, Heavy Ion <sup>83</sup> Kr <sup>25+</sup> , Tilt 63°, Part 10, Run n°30, Event n°7 1        | 8  |
| Figure 14: SET_2, VCC=+16V, Roll 0, Heavy Ion <sup>83</sup> Kr <sup>25+</sup> , Tilt 63°, Part 11, Run n°36, Event n°3 1        | 8  |
| Figure 15: SET_1, VCC=+18V, Roll 90, Heavy Ion <sup>83</sup> Kr <sup>25+</sup> , Tilt 63°, Part 14, Run n°50, Event n°5 1       | 9  |
| Figure 16: SET_2, VCC=+18V, Roll 0, Heavy Ion <sup>83</sup> Kr <sup>25+</sup> , Tilt 55°, Part 11, Run n°38, Event n°4 1        | 9  |

## **TABLES**

| Table 1: Organization of activities | 4  |
|-------------------------------------|----|
| Table 2 : UCL cocktail M/Q=5        | 8  |
| Table 3 : UCL cocktail M/Q=3.3      | 8  |
| Table 4: RHFPM4424 test results     | 12 |
| Table 5: OUTL cross section results | 13 |
| Table 6: OUTH cross section results | 13 |



RHFPM4424

Rev: 1

# 1. Introduction

This report includes the test results of the heavy ions Single Event Effects (SEEs) test sequence carried out on the RHFPM4424, a Rad-Hard 4.5A Dual Low Side MOSFET driver from STMicroelectronics.

This test was performed for ESA at U.C.L. (Université Catholique de Louvain, Belgium) on July 10<sup>th</sup> till 12<sup>th</sup>, 2014 for which 15 samples were irradiated. The ESA Technical Officer, Christian Poivey, participated in the test campaign.

The main objective of this test was to investigate on the sentivitivy of the RHFPM4424 versus Single Event Transients (SETs) and Single Event Burn-outs (SEBs) induced by heavy ions with different incidence angles.

## 2. Documents

#### 2.1. Applicable documents

Technical Proposal: TRAD/P/ESA/COO5/AV/020414 Rev0 Irradiation Test Plan: COO5 D1: TRAD/ITP/ESA/COO5/PG/040614 Rev1

#### **2.2.** Reference documents

Data Sheet: STMicroelectronics ver0.5 of March 2013

## 3. Organization of Activities

The devices sent by ESA to TRAD were delidded. The testing board and the testing software were developed by TRAD. Before the campaign the samples were checked-out and the test bench was validated with a californium test at TRAD. The heavy ions campaign was performed by TRAD under the supervision Mr Poivey from ESA. The next table summarises the responsible entity for each activity of involved in this project.

| 1 | Procurement of delidded Test Samples          | ESA          |
|---|-----------------------------------------------|--------------|
| 2 | Preparation of Test Hardware and Test Program | TRAD         |
| 3 | Samples Check out                             | TRAD         |
| 4 | Accelerator Test                              | TRAD and ESA |
| 5 | Heavy Ion Test Report                         | TRAD         |

Table 1: Organization of activities



RHFPM4424

Rev: 1

# 4. Parts information

## 4.1. Device description

RHFPM4424 is a flexible, high-frequency dual low-side driver specifically designed to work with high capacitive MOSFETs and IGBTs in a high radiation environment such as space.

### 4.2. Identification

| Туре:         | RHFPM4424                                 |
|---------------|-------------------------------------------|
| Manufacturer: | STMicroelectronics                        |
| Function:     | Rad-Hard 4.5A Dual Low Side MOSFET driver |

## 4.3. Procurement information

| Packaging:    | FP-16                     |
|---------------|---------------------------|
|               |                           |
| Customer P/O: | 1480                      |
|               |                           |
| Sample size:  | 36 parts provided by ESA. |

#### 4.4. Sample Preparation

All parts were received delidded. A functional test sequence was performed on samples to check that devices were functional.

Among the 36 delidded samples available for the test campaign, 15 were irradiated and 21 were not used.



Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1

## 4.5. Sample pictures

#### 4.5.1. External view

The next figures show an external view of the parts. The left figure is a view of the top and the right figure shows a view of the bottom of the part. As it can be seen, no markings were present on the parts.



Figure 1: package marking

#### 4.5.2. Internal view



Figure 2 gives an overview of the die. Figure 3 presents two views of the internal marking of the die. The two views on figure 3 are located in the middle right side indicated by the two circles on figure 2.

Figure 2: Internal overall view

TRAD - Bâtiment Gallium - 907 l'Occitane 31670 LABEGE CEDEX. Tel: (33) 5 61 00 95 60. Fax: (33) 5 61 00 95 61. EMAIL: trad@trad.fr



Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1



Figure 3: Die marking

# 5. Dosimetry and Irradiation Facilities

Tests were performed at U.C.L (Université Catholique de Louvain) from July 10<sup>th</sup> to July 12<sup>th</sup>, 2014. 15 delidded samples were irradiated.

## 5.1. UCL Heavy Ion Test Facility (Université Catholique de Louvain - Belgium)

The CYClotron of LOuvain la NEuve (CYCLONE) is a multi-particle, variable energy, cyclotron capable of accelerating protons (up to 85 MeV), alpha particles and heavy ions.

For the heavy ions, the covered LET range is between 1.2 MeV.cm<sup>2</sup>.mg<sup>-1</sup> and 67.7 MeV.cm<sup>2</sup>.mg<sup>-1</sup>. Heavy ions available are separated in two "Ion Cocktails" named M/Q=5 and M/Q=3.3.



One of the main advantages of the UCL Heavy Ion Test Facility is the fast changing of ion species. Within the same cocktail, it takes only a few minutes to change from one ion to another.

The chamber has the shape of a barrel stretched vertically; its internal dimensions are 71 cm in height, 54 cm in width and 76 cm in depth. One side flange is used to support the board frame (25 X 25 cm) and user connectors.

The chamber is equipped with a vacuum system. The right picture was taken during the experiment and shows the test board inside the vacuum chamber.





Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1

#### 5.2. Dosimetry

To control and monitor the beam parameters, a dosimetry box is placed in front of the chamber. It contains a faraday cup, 2 Parallel Plate Avalanche Counters (PPAC).

Two additional surface barrier detectors are placed in the test chamber.

The faraday cup is used during beam preparation at high intensity.

A beam uniformity measurement is performed with a collimated surface barrier detector. This detector is placed on a X and Y movement. The final profile is drawn and the  $\pm$  10 % width is calculated. The Homogeneity is  $\pm$  10 % on a 25 mm diameter.

During the irradiation, the flux is integrated in order to give the delivered total fluence  $(particule.cm^{-2})$  on the device.

## 5.3. Beam characteristics

The beam flux is variable between a few particles  $s^{-1}cm^{-2}$  and  $10^4s^{-1}cm^{-2}$  and is set depending on the device sensitivity.

At UCL, Heavy ions available are separated in two "Ion Cocktails", one for the High LET (M/Q=5) and a second one for the High Range (M/Q=3.3). On table 2 and 3 the characteristics of each cocktail can be found (heavy ions used during the experiment are yellow highlighted).

| lon                              | Energie | Range    | LET                                    |  |  |  |  |
|----------------------------------|---------|----------|----------------------------------------|--|--|--|--|
| 1011                             | (MeV)   | (µm(Si)) | (MeV.cm <sup>2</sup> .mg <sup>-1</sup> |  |  |  |  |
| <sup>15</sup> N <sup>3+</sup>    | 60      | 59       | 3.3                                    |  |  |  |  |
| <sup>20</sup> Ne <sup>4+</sup>   | 78      | 45       | 6.4                                    |  |  |  |  |
| <sup>40</sup> Ar <sup>8+</sup>   | 151     | 40       | 15.9                                   |  |  |  |  |
| <sup>84</sup> Kr <sup>17+</sup>  | 305     | 39       | 40.4                                   |  |  |  |  |
| <sup>124</sup> Xe <sup>25+</sup> | 420     | 37       | 67.7                                   |  |  |  |  |

| lon                             | Energie | Range    | LET                                      |
|---------------------------------|---------|----------|------------------------------------------|
| 1011                            | (MeV)   | (µm(Si)) | (MeV.cm <sup>2</sup> .mg <sup>-1</sup> ) |
| <sup>13</sup> C <sup>4+</sup>   | 131     | 292      | 1.1                                      |
| <sup>22</sup> Ne <sup>7+</sup>  | 235     | 216      | 3                                        |
| <sup>40</sup> Ar <sup>12+</sup> | 372     | 117      | 10.2                                     |
| <sup>58</sup> Ni <sup>18+</sup> | 567     | 100      | 20.4                                     |
| <sup>83</sup> Kr <sup>25+</sup> | 756     | 92       | 32.6                                     |

Table 2 : UCL cocktail M/Q=5

Table 3 : UCL cocktail M/Q=3.3

## 6. Test Procedure and Setup

#### 6.1. Test procedure

#### 6.1.1. Description of the test method

In order to investigate on the sensitivity of RHFPM4424 to show Single Event Burn-out, we focused our attention on the LET value, the incidence angle and the voltage supply. To do that, for each ion, two rolls (0° and 90°) and different tilts were used.

Runs were performed up to a fluence of  $1.10^7$  cm<sup>-2</sup>. This configuration allowed to verify the SET and SEB sensitivity of the device for two different Rolls and for different values of the voltage supply (Vcc). The test started with a VCC voltage at 15V and was increased up to 18V (by step of 1V) if no SEB occurred. The greater pass condition reached was confirmed on a second part.

The goal was to define the highest Vcc allowed (causing no failure) for the greatest Tilt of each Roll. The test was terminated when the maximum fluence was reached or when we got a permanent damage on the component.

The next figure gives a description of the different rolls used during the experiment:



#### Figure 4: Rolls schematic description

#### 6.1.2. SET Test Principle

Single Event Transient is an event described by a voltage amplitude and a timing parameter. To detect these events, the two outputs of the component are monitored.

As the input of the device is dynamic, a mask on the two output signals is created. If one of the two outputs goes over the mask, an event is counted and the screenshot is saved by the oscilloscope. An internal counter is incremented for the mask which presents a failure.



At the end of each run, the test program downloads the records currents waveforms to store them.

#### 6.1.3. SEB Test Principle

This test is destructive. The output voltage is measured by an oscilloscope and the power consumption is recorded by an ampmeter. If an SEB occurs, an overconsumption appears and outputs abruptly go out



RHFPM4424

Rev: 1

of the mask defined before. The test is stopped as soon as an SEB occurs, or when the overall fluence on the component reaches  $1.10^7$  cm<sup>-2</sup>.

## 6.2. Test bench description

#### 6.2.1. Preparation of test hardware and program

TRAD has developed a specific test program and a specific motherboard to feed power supply to components.

The test board allows to visualize the two output voltages and to monitor the input current. The test program allows the user to set the different conditions of the test and to follow the number of SEE and the profile of detected errors in real time, through a standard IEEE488 and Ethernet communication interface. All signals are delivered and monitored by this equipment and SEE curves are saved to the hard disk for storage. An overall description of the test system is given in Figure 6. Before performing the heavy ion test, the whole system (delidded sample, test board and software) was assembled and tested in V.A.S.C.O (Vacuum System for Californium Operation).

#### 6.2.2. Test Bench description

Figure 6 gives a global view of the test bench. It is composed by an oscilloscope, a multimeter, a test board (the biasing under irradiation is shown in figure 7), a power supply and a computer.



Figure 6: test system description



Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1

Figure 7 shows the biasing under irradiation of the part. A voltage square signal with 50% duty cycle and with a frequency of 100KHz was applied on inputs PWM\_1 and PWM\_2. Icc was monitored during the whole test with the a multimeter and was also recorded. SET (Single Event Transient) was monitored at the output of the DUT thanks to a scope. When the scope triggers, the screenshot was recorded.



Figure 7: Test board schematic

## 6.2.3. Test equipment identification

The tests were carried out with evaluation test boards developed by TRAD.

| COMPUTER        | MI-OP-058                      |
|-----------------|--------------------------------|
| REF. TEST BOARD | TRAD/CT1/I/PM442/ZIP16/MV/1311 |
| EQUIPMENT       | MI-60; MI-42; GR-53; MI-71     |
| TEST PROGRAM    | RHFPM4424_TI_xxx1_Bi_V10.spf   |

## 7. **RESULTS**

Here above, the device under test was described, the irradiation facility was presented and finally the overall view of the test bench and a test description was performed. This chapter will present the results obtained during the campaign.

#### 7.1. Summary of runs

The choice of the configuration tested and the fluence for each run to optimise test time, were taken with the supervision of Mr Poivey from ESA.

On the next page a table listing all the Runs and configurations performed during the campaign can be found.

#### Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 HEAVY IONS TEST REPORT

Date: 08 August 2014

Rev: 1

RHFPM4424

**Single Event Effects** 

Tests & radiations

|          |                |     |      |            |                 |               |                     | v           | CC=15 to 19V             |                       |                                                  |             |                                           |                       |                             |                         |                          |                         |                          |     |                  |               |               | lcc          |                                                                                                              |
|----------|----------------|-----|------|------------|-----------------|---------------|---------------------|-------------|--------------------------|-----------------------|--------------------------------------------------|-------------|-------------------------------------------|-----------------------|-----------------------------|-------------------------|--------------------------|-------------------------|--------------------------|-----|------------------|---------------|---------------|--------------|--------------------------------------------------------------------------------------------------------------|
| Run      | Part           | Vcc | Roll | lon        | Energy<br>(MeV) | Range<br>(µm) | LET<br>(MeV.cm²/mg) | Tilt<br>(°) | Eff. LET<br>(MeV.cm²/mg) | Eff. Range<br>(µm Si) | Flux (φ)<br>(cm <sup>-2</sup> .s <sup>-1</sup> ) | Time<br>(s) | Run Fluence<br>(Φ)<br>(cm <sup>-2</sup> ) | Run<br>Dose<br>(krad) | Cumulated<br>Dose<br>(krad) | SET on<br>OUTH<br>(CH1) | OUTH<br>Cross<br>Section | SET on<br>OUTL<br>(CH2) | OUTL<br>Cross<br>Section | SEB | Cross<br>Section | SEB<br>RESULT | Before<br>RUN | After<br>RUN | COMMENTS                                                                                                     |
|          | High LET M/Q=5 |     |      |            |                 |               |                     |             |                          |                       |                                                  |             |                                           |                       |                             |                         |                          |                         |                          |     |                  |               |               |              |                                                                                                              |
| 1        | 1              | 15  | 90   | 124Xe 26+  | 420             | 37            | 67.7                | 0           | 67.70                    | 37.0                  | 9.07E+03                                         | 1102        | 1.00E+07                                  | 10.832                | 10.832                      | 5                       | 5.00E-07                 | 8                       | 8.00E-07                 | 0   | <1.00E-09        | Pass          | 34mA          | 34mA         |                                                                                                              |
| 2        | 1              | 16  | 90   | 124Xe 26+  | 420             | 37            | 67.7                | 0           | 67.70                    | 37.0                  | 1.05E+04                                         | 954         | 1.00E+07                                  | 10.832                | 21.664                      | 1                       | 1.00E-07                 | 3                       | 3.00E-07                 | 0   | <1.00E-09        | Pass          | 36mA          | 36mA         | Oscilloscope resolution increased to 5k                                                                      |
| 3        | 1              | 17  | 90   | 124Xe 26+  | 420             | 37            | 67.7                | 0           | 67.70                    | 37.0                  | 1.05E+04                                         | 953         | 1.00E+07                                  | 10.832                | 32.496                      | 2                       | 2.00E-07                 | 2                       | 2.00E-07                 | 0   | <1.00E-09        | Pass          | 39mA          | 39mA         | Oscilloscope resolution increased to 20k<br>Time base put to 4µs/div                                         |
| 4        | 1              | 18  | 90   | 124Xe 26+  | 420             | 37            | 67.7                | 0           | 67.70                    | 37.0                  | 1.03E+04                                         | 967         | 1.00E+07                                  | 10.832                | 43.328                      | 3                       | 3.00E-07                 | 3                       | 3.00E-07                 | 0   | <1.00E-09        | Pass          | 41mA          | 41mA         | Oscilloscope resolution increased to 1k<br>ime base restored to 5µs/div                                      |
| 5        | 2              | 18  | -    | 124Xe 26+  | 420             | 37            | 67.7                | 0           | 67.70                    | 37.0                  | 1.01E+04                                         | 994         | 1.00E+07                                  | 10.832                | 10.832                      | 7                       | 7.00E-07                 | 9                       | 9.00E-07                 | 0   | <1.00E-09        | Pass          | 42mA          | 41mA         |                                                                                                              |
| 6        | 2              | 15  | 90   | 124Xe 26+  | 420             | 37            | 67.7                | 15          | 70.09                    | 35.7                  | 9.90E+03                                         | 1010        | 1.00E+07                                  | 11.214                | 22.046                      | 8                       | 8.00E-07                 | 8                       | 8.00E-07                 | 0   | <1.00E-09        | Pass          | 35mA          | 35mA         |                                                                                                              |
|          | 2              | 16  | 90   | 124Xe 26+  | 420             | 37            | 67.7                | 15          | 70.09                    | 35.7                  | 9.75E+03                                         | 1026        | 1.00E+07                                  | 11.214                | 33.260                      | 6                       | 6.00E-07                 |                         | 7.00E-07                 | 0   | <1.00E-09        | Pass          | 37mA          | 37mA         |                                                                                                              |
| °        | 2              | 17  | 90   | 124 Xe 20+ | 420             | 37            | 67.7                | 15          | 70.09                    | 35.7                  | 9.53E+03                                         | 1049        | 1.00E+07                                  | 11.214                | 44.474                      | 6                       | 6.00E-07                 | 5                       | 6.00E-07                 | 0   | <1.00E-09        | Pass          | 39MA          | 39MA         |                                                                                                              |
| 10       | 3              | 18  | 90   | 124Xe 26+  | 420             | 37            | 67.7                | 15          | 70.09                    | 35.7                  | 9.33E+03                                         | 1047        | 1.00E+07                                  | 11.214                | 11 214                      | 2                       | 2.00E-07                 | 3                       | 3.00E-07                 | 0   | <1.00E-09        | Page          | 41mA          | 4111A        |                                                                                                              |
| 11       | 3              | 15  | 0    | 124Xe 26+  | 420             | 37            | 67.7                | 15          | 70.09                    | 35.7                  | 9.82E+03                                         | 1018        | 1.00E+07                                  | 11.214                | 22.428                      | 3                       | 4.00E-07                 | 4                       | 4.00E-07                 | 0   | <1.00E-09        | Pass          | 34mA          | 34mA         |                                                                                                              |
| 12       | 3              | 16  | 0    | 124Xe 26+  | 420             | 37            | 67.7                | 15          | 70.09                    | 35.7                  | 1.01E+04                                         | 995         | 1.00E+07                                  | 11.214                | 33.642                      | 8                       | 8.00E-07                 | 9                       | 9.00E-07                 | 0   | <1.00E-09        | Pass          | 36mA          | 36mA         |                                                                                                              |
| 13       | 3              | 17  | 0    | 124Xe 26+  | 420             | 37            | 67.7                | 15          | 70.09                    | 35.7                  | 1.01E+04                                         | 990         | 1.00E+07                                  | 11.214                | 44.856                      | 3                       | 3.00E-07                 | 3                       | 3.00E-07                 | 0   | <1.00E-09        | Pass          | 38mA          | 38mA         |                                                                                                              |
| 14       | 3              | 18  | 0    | 124Xe 26+  | 420             | 37            | 67.7                | 15          | 70.09                    | 35.7                  | 9.82E+03                                         | 1018        | 1.00E+07                                  | 11.214                | 56.071                      | 4                       | 4.00E-07                 | 4                       | 4.00E-07                 | 0   | <1.00E-09        | Pass          | 41mA          | 41mA         |                                                                                                              |
| 15       | 4              | 18  | 0    | 124Xe 26+  | 420             | 37            | 67.7                | 15          | 70.09                    | 35.7                  | 9.70E+03                                         | 1031        | 1.00E+07                                  | 11.214                | 11.214                      | 4                       | 4.00E-07                 | 5                       | 5.00E-07                 | 0   | <1.00E-09        | Pass          | 42mA          | 41mA         |                                                                                                              |
| 16       | 4              | 18  | 0    | 124Xe 26+  | 420             | 37            | 67.7                | 30          | 78.17                    | 32.0                  | 1.02E+04                                         | 978         | 1.00E+07                                  | 12.508                | 23.722                      | 6                       | 6.00E-07                 | 9                       | 9.00E-07                 | 0   | <1.00E-09        | Pass          | 41mA          | 41mA         |                                                                                                              |
| 17       | 4              | 18  | 0    | 124Xe 20+  | 420             | 37            | 67.7                | 40          | 00.30                    | 26.3                  | 0.61E±03                                         | 965         | 1.00E+07                                  | 2.445                 | 40.307                      | 0                       | <6.27E-09                | 0                       | <6.27E-09                | 1   | <1.00E-09        | Fail          | 41mA          | 41mA         | Internal limitation of Vcc Power supply reached durring Irradiations                                         |
| 19       | 5              | 18  | 0    | 124Xe 26+  | 420             | 37            | 67.7                | 45          | 95.74                    | 26.2                  | 1.00E+04                                         | 1994        | 2.00E+07                                  | 30.638                | 30.638                      | 10                      | 5.00E-07                 | 11                      | 5.50E-07                 | 0   | <0.50E-09        | Pass          | 41mA          | 40mA         | Internal limitation of veel tower supply reached during madiations                                           |
| 20       | 5              | 19  | 0    | 124Xe 26+  | 420             | 37            | 67.7                | 15          | 70.09                    | 35.7                  | 1.01E+04                                         | 990         | 1.00E+07                                  | 11.214                | 41.852                      | 4                       | 4.00E-07                 | 6                       | 6.00E-07                 | 0   | <1.00E-09        | Pass          | 42mA          | 42mA         |                                                                                                              |
| 21       | 6              | 18  | 0    | 124Xe 26+  | 420             | 37            | 67.7                | 50          | 105.32                   | 23.8                  | 1.05E+04                                         | 955         | 1.00E+07                                  | 16.852                | 16.852                      | 5                       | 5.00E-07                 | 5                       | 5.00E-07                 | 0   | <1.00E-09        | Pass          | 41mA          | 40mA         |                                                                                                              |
| 22       | 6              | 18  | 0    | 124Xe 26+  | 420             | 37            | 67.7                | 45          | 95.74                    | 26.2                  | 1.04E+04                                         | 959         | 1.00E+07                                  | 15.319                | 32.170                      | 5                       | 5.00E-07                 | 5                       | 5.00E-07                 | 0   | <1.00E-09        | Pass          | 40mA          | 40mA         |                                                                                                              |
|          |                |     |      |            |                 |               |                     |             |                          |                       |                                                  |             |                                           |                       |                             |                         |                          |                         |                          |     |                  |               |               |              |                                                                                                              |
|          |                |     |      |            |                 |               |                     |             |                          |                       |                                                  |             |                                           | н                     | igh Range M/C               | Q=3.3                   |                          |                         |                          |     |                  |               |               |              |                                                                                                              |
| 23       | 7              | 18  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 58          | 61.52                    | 48.8                  | 8.09E+03                                         | 971         | 7.86E+06                                  | 7.732                 | 7.732                       | -                       | <1.27E-09                | -                       | <1.27E-09                | 1   | 1.27E-07         | Fail          | 41mA          | 0.9A         | Don't take into account SET observed*                                                                        |
| 24       | 8              | 17  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 58          | 61.52                    | 48.8                  | 8.14E+03                                         | 1229        | 1.00E+07                                  | 9.843                 | 9.843                       | 9                       | 9.00E-07                 | 10                      | 1.00E-06                 | 0   | <1.00E-09        | Pass          | 40mA          | 39mA         | Internal limitation of vec 1 ower supply reached during inadiations                                          |
| 25       | 8              | 18  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 58          | 61.52                    | 48.8                  | 8.19E+03                                         | 288         | 2.36E+06                                  | 2.323                 | 12.166                      | -                       | <4.24E-09                | -                       | <4.24E-09                | 1   | 4.24E-07         | Fail          | 41mA          | 0.917A       | Internal limitation of Vcc Power supply reached durring Irradiations                                         |
| 26       | 9              | 17  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 58          | 61.52                    | 48.8                  | 7.71E+03                                         | 11          | 8.48E+04                                  | 0.083                 | 0.083                       | -                       | <0.12E-06                | -                       | <0.12E-06                | 1   | 1.18E-05         | Fail          | 39mA          | 1A           | Don't take into account SET observed*                                                                        |
| 27       | 10             | 16  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 58          | 61.52                    | 48.8                  | 8.03E+03                                         | 1245        | 1.00E+07                                  | 9.843                 | 9.843                       | 0                       | <1.00E-09                | 0                       | <1.00E-09                | 0   | <1.00E-09        | Pass          | 37mA          | 36mA         | Don't take into account SET observed*                                                                        |
| 28       | 10             | 17  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 58          | 61.52                    | 48.8                  | 8.04E+03                                         | 1244        | 1.00E+07                                  | 9.843                 | 19.686                      | 10                      | 1.00E-06                 | 12                      | 1.20E-06                 | 0   | <1.00E-09        | Pass          | 38mA          | 38mA         |                                                                                                              |
| 29       | 10             | 16  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 60          | 65.20                    | 46.0                  | 7.63E+03                                         | 1310        | 1.00E+07                                  | 10.432                | 30.118                      | 5                       | 5.00E-07                 | 6                       | 7.00E-07                 | 0   | <1.00E-09        | Pass          | 36mA          | 36mA         |                                                                                                              |
| 30       | 10             | 18  | 0    | 83 Kr 25+  | 756             | 92            | 32.0                | 45          | 46.10                    | 41.0                  | 1.08E+04                                         | 926         | 1.00E+07                                  | 7 377                 | 41.607                      | 3                       | 3.00E-07                 | 4                       | 4.00E-07                 | 0   | <1.00E-09        | Pass          | 40mA          | 40mA         |                                                                                                              |
| 32       | 10             | 18  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 55          | 56.84                    | 52.8                  | 8.75E+03                                         | 1143        | 1.00E+07                                  | 9.094                 | 58.078                      | 5                       | 5.00E-07                 | 5                       | 5.00E-07                 | 0   | <1.00E-09        | Pass          | 40mA          | 40mA         |                                                                                                              |
| 33       | 10             | 17  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 60          | 65.20                    | 46.0                  | 7.69E+03                                         | 1301        | 1.00E+07                                  | 10.432                | 68.510                      | 6                       | 6.00E-07                 | 6                       | 6.00E-07                 | 0   | <1.00E-09        | Pass          | 38mA          | 38mA         |                                                                                                              |
| 34       | 10             | 17  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 71.81                    | 41.8                  | 6.93E+03                                         | 1444        | 1.00E+07                                  | 11.489                | 79.999                      | 4                       | 4.00E-07                 | 5                       | 5.00E-07                 | 0   | <1.00E-09        | Pass          | 38mA          | 38mA         |                                                                                                              |
| 35       | 10             | 18  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 71.81                    | 41.8                  | 6.98E+03                                         | 39          | 2.72E+05                                  | 0.313                 | 80.312                      | -                       | <0.04E-06                | -                       | <0.04E-06                | 1   | 3.67E-06         | Fail          | 40mA          | 1A           | Overconsumption up to 69mA. Internal limitation of Vcc Power supply<br>reached after the end of irradiation. |
| 36       | 11             | 16  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 71.81                    | 41.8                  | 6.97E+03                                         | 1434        | 1.00E+07                                  | 11.489                | 11.489                      | 6                       | 6.00E-07                 | 8                       | 8.00E-07                 | 0   | <1.00E-09        | Pass          | 36mA          | 36mA         |                                                                                                              |
| 37       | 11             | 17  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 71.81                    | 41.8                  | 6.93E+03                                         | 1444        | 1.00E+07                                  | 11.489                | 22.978                      | 4                       | 4.00E-07                 | 5                       | 5.00E-07                 | 0   | <1.00E-09        | Pass          | 39mA          | 39mA         |                                                                                                              |
| 38       | 11             | 18  | 0    | 83 Kr 25+  | 756             | 92            | 32.6                | 55          | 56.84                    | 52.8                  | 8.73E+03                                         | 1146        | 1.00E+07                                  | 9.094                 | 32.072                      | 7                       | 7.00E-07                 | 7                       | 7.00E-07                 | 0   | <1.00E-09        | Pass          | 41mA          | 41mA         |                                                                                                              |
| 39<br>40 | 11             | 18  | 0    | 83 Kr 25+  | 756             | 92            | 32.0                | 50          | 65.20                    | 46.0                  | 7.50E±03                                         | 1240        | 1.00E+07                                  | 9.643                 | 41.915<br>52.347            | 7                       | 3.00E-07                 | 6                       | 4.00E-07                 | 0   | <1.00E-09        | Pass          | 41mA          | 41mA         |                                                                                                              |
| 40       | 11             | 18  | 0    | 83 Kr 25+  | 756             | 92            | 32.0                | 63          | 71.81                    | 40.0                  | 6.81E+03                                         | 33          | 2.25E+05                                  | 0.258                 | 52.605                      | -                       | <0.04E-06                | -                       | <0.00E=07                | 1   | 4 45E-06         | Fail          | 41mA          | 14           | Internal limitation of Vcc Power supply reached durring Irradiations                                         |
| 42       | 12             | 16  | 90   | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 71.81                    | 41.8                  | 6.74E+03                                         | 1483        | 1.00E+07                                  | 11.489                | 11.489                      | -                       | -                        | -                       | -                        | 0   | <1.00E-09        | Pass          | 37mA          | 36mA         | Don't take into account SET observed**                                                                       |
| 43       | 13             | 16  | 90   | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 71.81                    | 41.8                  | 6.95E+03                                         | 1439        | 1.00E+07                                  | 11.489                | 11.489                      | 5                       | 5.00E-07                 | 7                       | 7.00E-07                 | 0   | <1.00E-09        | Pass          | 37mA          | 37mA         |                                                                                                              |
| 44       | 13             | 17  | 90   | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 71.81                    | 41.8                  | 7.03E+03                                         | 1422        | 1.00E+07                                  | 11.489                | 22.978                      | 11                      | 1.10E-06                 | 11                      | 1.10E-06                 | 0   | <1.00E-09        | Pass          | 39mA          | 39mA         |                                                                                                              |
| 45       | 13             | 18  | 90   | 83 Kr 25+  | 756             | 92            | 32.6                | 55          | 56.84                    | 52.8                  | 8.87E+03                                         | 1128        | 1.00E+07                                  | 9.094                 | 32.072                      | 3                       | 4.00E-07                 | 4                       | 4.00E-07                 | 0   | <1.00E-09        | Pass          | 41mA          | 41mA         |                                                                                                              |
| 46       | 13             | 18  | 90   | 83 Kr 25+  | 756             | 92            | 32.6                | 58          | 61.52                    | 48.8                  | 8.05E+03                                         | 1242        | 1.00E+07                                  | 9.843                 | 41.915                      | 4                       | 4.00E-07                 | 5                       | 5.00E-07                 | 0   | <1.00E-09        | Pass          | 41mA          | 41mA         |                                                                                                              |
| 4/       | 13             | 18  | 90   | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 65.20<br>71.81           | 46.0                  | 7.69E+03<br>6.90E+03                             | 1450        | 1.00E+07                                  | 10.432                | 52.347<br>63.837            | 2                       | 2.00E-07                 | 4                       | 4.00E-07<br>3.00E-07     | 0   | <1.00E-09        | Pass          | 41mA          | 41mA         |                                                                                                              |
| 49       | 14             | 17  | 90   | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 71.81                    | 41.8                  | 6.84E+03                                         | 1463        | 1.00E+07                                  | 11.489                | 11.489                      | 8                       | 8.00E-07                 | 9                       | 9.00E-07                 | 0   | <1.00E-09        | Pass          | 38mA          | 38mA         |                                                                                                              |
| 50       | 14             | 18  | 90   | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 71.81                    | 41.8                  | 6.98E+03                                         | 1433        | 1.00E+07                                  | 11.489                | 22.978                      | 8                       | 8.00E-07                 | 8                       | 8.00E-07                 | 0   | <1.00E-09        | Pass          | 40mA          | 40mA         |                                                                                                              |
| 51       | 15             | 18  | 90   | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 71.81                    | 41.8                  | 7.11E+03                                         | 1406        | 1.00E+07                                  | 11.489                | 11.489                      | 6                       | 6.00E-07                 | 6                       | 6.00E-07                 | 0   | <1.00E-09        | Pass          | 41mA          | 40mA         |                                                                                                              |
| 52       | 12             | 18  | 90   | 83 Kr 25+  | 756             | 92            | 32.6                | 63          | 71.81                    | 41.8                  | 6.78E+03                                         | 1475        | 1.00E+07                                  | 11.489                | 22.978                      | 6                       | 6.00E-07                 | 5                       | 5.00E-07                 | 0   | <1.00E-09        | Pass          | 42mA          | 40mA         |                                                                                                              |
| 53       | 12             | 18  | 90   | 83 Kr 25+  | 756             | 92            | 32.6                | 65          | 77.14                    | 38.9                  | 6.31E+03                                         | 1584        | 1.00E+07                                  | 12.342                | 35.321                      | 8                       | 8.00E-07                 | 8                       | 8.00E-07                 | 0   | <1.00E-09        | Pass          | 40mA          | 40mA         |                                                                                                              |
|          |                |     |      |            |                 |               |                     |             |                          |                       |                                                  |             | Ta                                        | ble 4:                | RHEPN                       | <b>ЛДДЭ</b> Д           | l test r                 | esult                   | s                        |     |                  |               |               |              |                                                                                                              |

\*: These run are not representative for SET; they were performed to investigate on SET pulse width detection.

\*\*: This run is not representative for SET; The Oscilloscope lost the mask configuration and was reinitialised for the next run.



Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1

On the next tables the cross section obtained on the output OUTL and OUTH for SET is presented. Cells in red background highlight the run were SEB failure was observed. *Xe ion highlighted in yellow and Kr ion highlighted in blue.* 

|                                                     | Roll 0   |          |          |          |          | Roll 90  |          |          |          |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| LET Eff<br>(MeV.cm <sup>2</sup> .mg <sup>-1</sup> ) | +15V     | +16V     | +17V     | +18V     | +19V     | +15V     | +16V     | +17V     | +18V     |
| 105.32 (50°)                                        | -        | -        | -        | 5.00E-07 | -        | -        | -        | -        | -        |
| 95.74 (45°)                                         | -        | -        | -        | 5.50E-07 | -        | -        | -        | -        | -        |
| 88.38 (40°)                                         | -        | -        | -        | 3.00E-07 | -        | -        | -        | -        | -        |
| 78.17 (30°)                                         | -        | -        | -        | 9.00E-07 | -        | -        | -        | -        | -        |
| 77.14 (65°)                                         | -        | -        | -        | -        | -        | -        | -        | -        | 8.00E-07 |
| 71.81 (63°)                                         | -        | 8.00E-07 | 5.00E-07 |          | -        | -        | 7.00E-07 | 1.10E-06 | 8.00E-07 |
| 70.09 (15°)                                         | 4.00E-07 | 9.00E-07 | 3.00E-07 | 5.00E-07 | 6.00E-07 | 8.00E-07 | 7.00E-07 | 6.00E-07 | 5.00E-07 |
| 67.7 (0°)                                           | 8.00E-07 | 3.00E-07 | 2.00E-07 | 9.00E-07 | -        | 8.00E-07 | 3.00E-07 | 2.00E-07 | 9.00E-07 |
| 65.2 (60°)                                          | -        | 7.00E-07 | 6.00E-07 | 6.00E-07 | -        | -        | -        | -        | 4.00E-07 |
| 61.52 (58°)                                         | -        | -        | 1.20E-06 | 4.00E-07 | -        | -        | -        | -        | 5.00E-07 |
| 56.84 (55°)                                         | -        | -        | -        | 7.00E-07 | -        | -        | -        | -        | 4.00E-07 |
| 46.1 (45°)                                          | -        | -        | -        | 4.00E-07 | -        | -        | -        | -        | -        |

Table 5: OUTL cross section results

|                                                     | Roll 0   |          |          |          |          | Roll 90  |          |          |          |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| LET Eff<br>(MeV.cm <sup>2</sup> .mg <sup>-1</sup> ) | +15V     | +16V     | +17V     | +18V     | +19V     | +15V     | +16V     | +17V     | +18V     |
| 105.32 (50°)                                        | -        | -        | -        | 5.00E-07 | -        | -        | -        | -        | -        |
| 95.74 (45°)                                         | -        | -        | -        | 5.00E-07 | -        | -        | -        | -        | -        |
| 88.38 (40°)                                         | -        | -        | -        | 3.00E-07 | -        | -        | -        | -        | -        |
| 78.17 (30°)                                         | -        | -        | -        | 6.00E-07 | -        | -        | -        | -        | -        |
| 77.14 (65°)                                         | -        | -        | -        | -        | -        | -        | -        | -        | 8.00E-07 |
| 71.81 (63°)                                         | -        | 6.00E-07 | 4.00E-07 |          | -        | -        | 5.00E-07 | 1.10E-06 | 8.00E-07 |
| 70.09 (15°)                                         | 3.00E-07 | 8.00E-07 | 3.00E-07 | 4.00E-07 | 4.00E-07 | 7.00E-07 | 6.00E-07 | 6.00E-07 | 6.00E-07 |
| 67.7 (0°)                                           | 5.00E-07 | 1.00E-07 | 2.00E-07 | 7.00E-07 | -        | 5.00E-07 | 1.00E-07 | 2.00E-07 | 7.00E-07 |
| 65.2 (60°)                                          | -        | 5.00E-07 | 6.00E-07 | 7.00E-07 | -        | -        | -        | -        | 5.00E-07 |
| 61.52 (58°)                                         | -        | -        | 1.00E-06 | 3.00E-07 | -        | -        | -        | -        | 4.00E-07 |
| 56.84 (55°)                                         | -        | -        | -        | 7.00E-07 | -        | -        | -        | -        | 3.00E-07 |
| 46.1 (45°)                                          | -        | -        | -        | 3.00E-07 | -        | -        | -        | -        | -        |

Table 6: OUTH cross section results

On the next paragraphs, SEB and SET results will be discussed separately.



RHFPM4424

Rev: 1

## 7.2. SEB tests results

Single Event Burnout inducing permanent damage on components were observed on 6 different parts:

- Roll 0:
  - During the irradiation with the Xenon Heavy Ion, Tilt=45°C (LET=95.74 MeV.cm<sup>2</sup>.mg<sup>-1</sup>) at VCC=+18V (part 4)
  - During the irradiation with the Krypton Heavy Ion, Tilt=58°C (LET=61.52 MeV.cm<sup>2</sup>.mg<sup>-1</sup>) at VCC=+18V (part 7 and 8) and VCC=+17V (part 9)
  - During the irradiation with the Krypton Heavy Ion, Tilt=63°C (LET=71.81 MeV.cm<sup>2</sup>.mg<sup>-1</sup>) at VCC=+18V (part 10 and 11)
- Roll 90: No SEB observed during this test under Xenon (0°, 15°) and Krypton (55°, 58°, 60°, 63°, 65°)

Please note that all SEB observed were for a supply voltage equal or greater than 17V.

#### 7.2.1. Description of events observed

Under Krypton irradiation and for Roll 0, some parts were damaged at VCC=+17V and at VCC=+18V and some parts presented no events.

Figures 8, 9 and 10 show the supply current in milliamp (blue) versus time.

In figures 8 and 10, a sudden over consumption can be observed (up to 1A and limited by the power supply) due to an event.

On figure 9, run n°40 shows no event. Consumption decreases a little bit during the run. This is due to the temperature stabilisation.

Parts were damaged (4, 7, 8, 9, 10 and 11) during irradiation by one SEB leading to an over consumption (1A instead of 40mA) at the end of the run.

Figures 11 and 12 show an example of the output signal of the DUT observed after the SEB for damaged parts n°8 and n°11. As it can be seen, the output frequency remains correct but the output levels are lower than expected and the shape of the square signal is distorted.



Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1



Figure 8: Power Supply monitoring, VCC=+18V, Roll 0, Heavy Ion <sup>83</sup>Kr<sup>25+</sup>, Tilt 58°, Part 8, Run n°25



Figure 9: Power Supply monitoring, VCC=+18V, Roll 0, Heavy Ion <sup>83</sup>Kr<sup>25+</sup>, Tilt 60°, Part 11, Run n°40



Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1



Figure 10: Power Supply monitoring, VCC=+18V, Roll 0, Heavy Ion <sup>83</sup>Kr<sup>25+</sup>, Tilt 63°, Part 11, Run n°41



Figure 11: SEB\_1, VCC=+18V, Roll 0, Heavy Ion<sup>83</sup>Kr<sup>25+</sup>, Tilt 58°, Part 8, Run n°25



Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1



Figure 12: SEB\_2, VCC=+18V, Roll 0, Heavy Ion <sup>83</sup>Kr<sup>25+</sup>, Tilt 63°, Part 11, Run n°41

#### 7.3. SET test results.

SETs were observed during the irradiation under Xenon and Krypton Heavy Ions for all Tilt of each Roll whatever the supply voltage.

As it can be noted on Table 4 there is a difference between the number of SET counted on output OUTH and output OUTL. When an event occurs on OUTH or on OUTL, it generates a smaller event on the other channel. This perturbation can be too small to cross the mask level and can be missed by the second channel. So this difference is only due to the threshold detection.

Because of a problem on the scope setup during irradiation with Xenon Heavy Ion, waveforms for run 1 to run 22 can't be plotted but we can confirm that the events observed on the high LET cocktail are the same as the ones observed on the High Range cocktail. So SET worst case analysis has been done only for runs under the Krypton Heavy Ion.

The next paragraph gives an example of worst case SET observed on OUTL and OUTH.



Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1

## 7.3.1. Worst Cases of SET Observed

Figures 13, 14, 15 and 16, are oscillogrammes of the worst cases observed were the yellow and green plot show the initial output, and the red plot shows the SET event observed versus time. At VCC=+16V, the worst SET cases observed with Krypton heavy lons occur for Roll 0 on Parts n°10 and n°11, during run n°30 and n°36 (Tilt 63°, 71.81 MeV.cm<sup>2</sup>.mg<sup>-1</sup>).



Figure 13: SET\_1, VCC=+16V, Roll 0, Heavy Ion <sup>83</sup>Kr<sup>25+</sup>, Tilt 63°, Part 10, Run n°30, Event n°7



Figure 14: SET\_2, VCC=+16V, Roll 0, Heavy Ion <sup>83</sup>Kr<sup>25+</sup>, Tilt 63°, Part 11, Run n°36, Event n°3

TRAD - Bâtiment Gallium - 907 l'Occitane 31670 LABEGE CEDEX. Tel: (33) 5 61 00 95 60. Fax: (33) 5 61 00 95 61. EMAIL: trad@trad.fr



Ref: TRAD/TI/RHFPM4424/XXX1/ESA/MV/1405 Date: 08 August 2014

RHFPM4424

Rev: 1

At VCC=+18V, the worst SET cases observed with Krypton heavy lon occur for Roll 0 on Parts n°14 and n°11, during run n°50 (Tilt 63°, 71.81 MeV.cm<sup>2</sup>.mg<sup>-1</sup>) and n°38 (Tilt 55°, 56.84 MeV.cm<sup>2</sup>.mg<sup>-1</sup>).



Figure 15: SET\_1, VCC=+18V, Roll 90, Heavy Ion <sup>83</sup>Kr<sup>25+</sup>, Tilt 63°, Part 14, Run n°50, Event n°5



Figure 16: SET\_2, VCC=+18V, Roll 0, Heavy Ion <sup>83</sup>Kr<sup>25+</sup>, Tilt 55°, Part 11, Run n°38, Event n°4



RHFPM4424

Rev: 1

## 8. Conclusion

Heavy ion tests were performed on RHFPM4424. The aim of the test was to evaluate the sensitivity of the device versus SET and SEB.

SETs were observed on the RHFPM4424 under the Xenon and the Krypton Heavy Ion for all Tilt of each Roll (LET value from 46.1 MeV.cm<sup>2</sup>.mg<sup>-1</sup> to 105.32 MeV.cm<sup>2</sup>.mg<sup>-1</sup>), and for all Power Supply (VCC from +15V to +19V)

For VCC=+18V, no SEB was observed for an LET value of 56.84 MeV.cm<sup>2</sup>.mg<sup>-1</sup> (Krypton heavy ions with 55° of Tilt).

For VCC=+16V, no SEB was observed for an LET value of 70.09 MeV.cm<sup>2</sup>.mg<sup>-1</sup> (Xenon heavy ions with 15° of Tilt).

For VCC=+16V, no SEB was observed for an LET value of 71.83 MeV.cm<sup>2</sup>.mg<sup>-1</sup> (Krypton heavy ions with 63° of Tilt).